
1

2

What is Verilog?

 It is a Hardware Description Language (HDL).

 Two major HDL languages:

- Verilog

- VHDL

 Verilog is easier to learn and use (It is like the C

language).

3

Cont.

 Introduced in 1985 by (Gateway Design Systems)

Now, part of (Cadence Design Systems).

 1990: OVI (Open Verilog International).

 1995: IEEE Standard.

 Simulator:

Verilogger Pro, from Synapticad INC.

4

Why Use Verilog?
 Digital systems are highly complex.

Schematic is useless (just connectivity)

 Behavioral Constructs:

- Hide implementation details.

- Arch. Alternatives through simulations.

- Detect design bottlenecks.

(BEFORE DETAILED DESIGN BEGINS)

 Automated Tools compile behavioral models to actual circuits.

5

Lexical Conventions

 Close to C / C++.

 Comments:

// Single line comment

/* multiple

lines

comments */

 Case Sensitive

 Keywords:

- Reserved.

- lower case.

- Examples: module, case, initial, always.

6

 Numbers:

<size>’<base format><number>

- Size: No. of bits (optional).

- Base format:  b: binary

 d : decimal

 o : octal

 h : hexadecimal

(DEFAULT IS DECIMAL)

Examples:

7

 Identifiers:

- Start with letter or (_).

- A combination of letters, digits, ($), and(_).

- Up to 1024 characters.

8

Program Structure
 Verilog describes a system as a set of modules.

 Each module has an interface to other modules.

 Usually:

- Each module is put in a separate file.

- One top level module that contains:

 Instances of hardware modules.

Test data.

 Modules can be specified:

- Behaviorally.

- Structurally.

 Modules are different from subroutines in other languages

(never called).

9

Physical Data Types

 Registers (reg):

- Store values

reg X; // 1-bit register

reg [7:0] A; // 8-bit register

 Wires (wire):

- Do not store a value.

- Represent physical connections between entities.

wire X;

wire [7:0] A;

10

 reg and wire data objects may have a value of:

- 0 : logical zero

- 1 : logical one

- x : unknown

- z : high impedance

 Registers are initialized to x at the start of simulation.

 Any wire not connected to something has the value x.

 How to declare a memory in verilog?

reg [7:0] A [1023:0];// A is 1K words each 8-bits

11

Operators

Binary Arithmetic Operators:

12

Relational Operators:

13

Logical Operators:

14

Bitwise Operators:

15

Other operators:

Concatenation:

{A[0], B[7:1]}

Shift Left:

A = A << 2 ; // right >>

Conditional:

A = C > D ? B + 3 : B – 2 ;

16

IF Statement

 Similar to C/C++.

 Instead of { } , use begin and end.

if (A == 4)

begin

B = 2;

end

else

begin

B = 4;

end

17

Case Statement

 Similar to C/ C++

 No break statements are needed.

case (A)

1'bz: $display("A is high impedance");

1'bx: $display("A is unknown");

default: $display("A = %b", A);

endcase

18

Repetition for, while and repeat Statements

 The for statement is very close to C's for statement except
that the ++ and -- operators do not exist in Verilog. Therefore,
we need to use i = i + 1.

for(i = 0; i < 10; i = i + 1)

$display("i= %0d", i);

 The while statement acts in the normal fashion.

i = 0;

while(i < 10)

begin

$display("i= %0d", i);

i = i + 1;

end

19

Example: NAND Gate

module NAND (out, in2, in1);

input in1, in2;

output out;

assign #2 out = ~(in1 & in2);// Continuous

// Assignment

endmodule

20

AND Gate

module AND (out, in2,in1);

input in1, in2;

output out;

wire w1;

NAND n1(w1, in2, in1);

NAND n2(out, w1, w1) ;

endmodule

21

Test

22

module TestAND;

reg in1,in2;

wire out;

AND a1(out, in2, in1);

initial begin :init

in2=0; in1=0;

#10 in2=0; in1=1;

#10 in2=1; in1=0;

#10 in2=1; in1=1;

#10;

end

initial begin

$display("Time in2 in1 out");

$monitor("%0d %b %b %b", $time, in2, in1, out);

end

endmodule

Output

23

Time in2 in1 out
0 0 0 x
4 0 0 0
10 0 1 0
20 1 0 0
30 1 1 0
34 1 1 1

24

4-to-1 Multiplexor

Structural Gate-level model

module MUX_4x1 (out ,in4 , in3 , in2, in1 , cntrl0, cntrl1);

output out;

input in1, in2, in3, in4, cntrl0, cntrl1;

wire not_cntrl0, not_cntrl1, w, x, y, z;

INV n0 (not_cntrl0, cntrl0);

INV n1 (not_cntrl1, cntrl1);

AND3 a0 (w, in0, not_cntrl1, not_cntrl0);

AND3 a1 (x, in1, not_cntrl1, cntrl0);

AND3 a2 (y, in2, cntrl1, not_cntrl0);

AND3 a3 (z, in3, cntrl1, cntrl0);

OR4 o1 (out, w, x, y, z);

endmodule

25

Behavioral Gate-Level Model (RTL)

module MUX_4x1 (out ,in3 , in2 , in1, in0 , cntrl0, cntrl1);

output out;

input in0, in1, in2, in3, cntrl1, cntrl0;

assign #4 out = (in0 & ~cntrl1 & ~cntrl0)|

(in1 & ~cntrl1 & cntrl0)|

(in2 & cntrl1 & ~cntrl0)|

(in3 & cntrl1 & cntrl0);

endmodule

26

Behavioral Model

module MUX_4x1 (out ,in3 , in2 , in1, in0 , cntrl0, cntrl1);

output out;

input in0, in1, in2, in3, cntrl1, cntrl0;

reg out;

always @(in0 or in1 or in2 or in3 or cntrl1 or cntrl0)

#4 case ({cntrl1, cntrl0})

2'b00 : out = in0;

2'b01 : out = in1;

2'b10 : out = in2;

2'b11 : out = in3;

endcase

endmodule

27

Behavioral code: output out must

now be of type reg as it is assigned

values in a procedural block.

Test Module
module test;

reg i0,i1,i2,i3,s1,s0;

wire out;

MUX_4x1 mux4_1(out,i3,i2,i1,i0,s0,s1);

initial begin: stop_at

#650; $finish;

end

initial begin :init

i0=0; i1=0; i2=0; i3=0; s0=0; s1=0;

$display("*** Mulitplexer 4 x 1 ***");

$display("Time i3 i2 i1 i0 s1 s0 out ");

$monitor("%0d %b %b %b %b %b %b %b ", $time,i3,i2,i1,i0,s1,s0,out);

end

always #10 i0 = ~i0;

always #20 i1 = ~i1;

always #40 i2 = ~i2;

always #80 i3 = ~i3;

always #160 s0 = ~s0;

always #320 s1 = ~s1;

endmodule

28

The Output

29

T - Flip Flop

// Asynchronous T Flip-flop with reset (Negative-edge trigger)

module TFF (Q, T, clk, reset);

input T, clk, reset;

output Q;

reg Q;

always @(negedge clk or posedge reset)

begin

#2;

if (reset == 1)

Q = 0;

else if (T == 1)

Q = ~Q;

end

endmodule

30

2-bit Counter

module counter2bit (Q, clk, reset);

output [1:0]Q;

input clk, reset;

//TFF (Q, T , clk , reset);

TFF t0(Q[0], 1'b1, clk , reset);

TFF t1(Q[1], 1'b1, Q[0], reset);

endmodule

31

module project_test ;

reg reset, clk ;

wire [1:0] Q;

counter2bit f1(Q, clk, reset);

initial #200 $finish;

initial begin : init_block

clk = 1'b0;

#5 reset = 1'b1 ;

#10 reset = 1'b0 ;

$display ("Time Q ");

$monitor ("%0t %0d ", $time, Q);

end

always #10 clk = ~clk;

endmodule

32

 1

University of Jordan
Computer Engineering Department

CPE439: Computer Organization Lab

Experiment 1: Introduction to Verilogger Pro

Objective:
 The objective of this experiment is to introduce the student to the environment of the Verilog

simulator, and write simple programs.

The VeriLogger Pro Environment:
 When you start the VeriLogger Pro program, you will notice that there are four windows.

The upper left is the project window; in this window you select the HDL source files to be

simulated. The upper right window enables the programmer to add a free parameter. The lower left

window is the place where you will see the timing diagram that shows the waveforms of the

signals monitored throughout the simulation. The lower right window is the place where the

contents of the log file can be seen, and the errors of compilation are displayed.

How to write a program that describes the operation of AND and NAND gates?

Perform the following steps:

1. Open a new project file by selecting “New HDL Project” from the Project menu. Name the

project “AND_project.hpj”. The name is given when you select “Save HDL Project As…”

from the Project menu.

2. Open a new source file by selecting “New HDL File” from the Editor menu. A new

window should appear in which you should copy the following Verilog code.
 // This module describes 2-input NAND gate behaviorally
module NAND (out, in1, in2);

input in1, in2;

output out;

assign #2 out = ~ (in1 & in2);

endmodule

3. Save this new HDL file as “NAND.v” by selecting “Save HDL File As…” from the Editor

menu.

4. Add NAND.v to your HDL project by selecting the project window, right click in the

workspace of this window, and select “Add HDL File(s)…”.

5. Similar to Steps 2 through 4, add to your project a new file named AND.v that contains

following code.
 // This module describes 2-input AND gate structurally

module AND (out, in1, in2);

input in1, in2;

output out;

wire w1;

NAND N1 (w1, in1, in2);

NAND N2 (out, w1, w1);

endmodule

 2

6. Now you need to test your AND and NAND modules and verify that they operate properly.

Similar to Steps 2 through 4, add to your project a new file named test.v that contains

following code.

module test;

reg in1,in2; //declaring in1 and in2 as registers for inputs

wire andout; //declaring andout as wire for output

AND n1(andout,in1,in2); //Creating an instance of the module AND

initial begin: stop_at //This initial statement selects

 #100; $finish; //an appropriate simulation period

end //We choose it here to be 250 time units

initial begin :init

 in1=0;

 in2=0; //Initially set in1 and in2 to zero

/* The $display statement prints the sentence between quatations in the

log file. It Operates in the same way the printf function does in the C

language.*/

 $display("*** Table of changes ***");

 $display("Time in1 in2 andout");

/* The monitor statement prints the values of the different parameters

whenever a change in the value of one of them or more occurs.*/

 $monitor("%0d %b %b %b",$time,in1,in2,andout);

end

 /* We use this always construct to continuously vary the values of

the input registers in1 and in2, in order to have a simulation whose

output continuously changes.*

always #10 in1 = ~in1;

always #20 in2 = ~in2;

endmodule

7. After you have added the required files start the program simulation by clicking on the

green arrow in the center of the Tool bar. The results should appear in the log file and the

waveforms should appear in the timing diagram.

 1

University of Jordan

Computer Engineering Department

CPE439: Computer Organization Lab

Experiment 2: 32-Bit ALU

Description

In this experiment, students have to design and test a 32-bit ALU with the block diagram

shown in Figure 1 and the operations listed in Table I. The design should be done using

Verilog structural programming by utilizing the modules available in the library Library439.v

that is available online. It is advised that you follow the modular approach in your design, in

which you start by designing small modules from which you build the larger modules.

m (operation) Function

000 Or

001 And

010 Xor

011 Add

100 Nor

101 Nand

110 Slt (Set on less than)

111 Subtract

Figure 1. 32-bit ALU block diagram Table I. Arithmetic and logic operations

supported by the ALU

Procedure

1) Using modular design, you may start the design of the 32-bit ALU by considering the

implementation of a 1-bit ALU shown in Figure 2. In order to build this circuit, most

of the primitive and basic gates are available in the library Library439.v. However,

you have to design the 1-bit full adder and the 8-to-1 multiplexer according the

following specifications. Keep in your mind that your Verilog modules for these units

should be structural.

a) (Prelab.)1-bit FA

The block diagram and truth table for the full adder are shown in Figure 3.

You should write a Verilog structural module to implement this logic circuit

using the following template.

module FullAdder(Cout, sum, a, b, Cin);

 output sum, Cout;

 input Cin, a, b;

 // implementation details are left to the student

endmodule

32

32

32

m (operation)

result

A

B

ALU

3

 2

Figure 2. 1-bit ALU.

a b Cin Cout Sum

0 0 0 0 0

0 0 1 0 1

0 1 0 0 1

0 1 1 1 0

1 0 0 0 1

1 0 1 1 0

1 1 0 1 0

1 1 1 1 1

Figure 3. 1-bit FA block diagram and truth table.

b) (Prelab.) 8-to-1 Multiplexor

You should write a Verliog module that implements this multiplexor using structural

modeling. Your module should use the following template.

module Mux_8_to_1(result, s, in);

 output result;

 input [2:0] s;

 input [7:0] in;

 // implementation details are left to the student…

endmodule

2) Once you have built the full adder and the multiplexor, you can now move to the next

level by writing the Verilog module that implements the 1-bit ALU using the

following template.
module ALU_1(result, sum, Cout, Cin, a, b, less, m);

 output result, sum, Cout;

 input Cin, a, b, less;

 input [2:0] m;

 // implementation details are left to the student…

endmodule

1-bit Full
Adder

a

b

Cin

Cout

sum

 3

3) After you have designed the 1-bit ALU, you may choose to use 32 copies of this

module to build the large 32-bit ALU. However, such approach is time consuming

and requires a lot of effort in wiring-up these instances. Instead, consider building the

32-bit ALU using 8-bit ALUs. In this case you need to wire only 4 instances. So,

consider writing a Verilog module for an 8-bit ALU using the 1-bit ALU designed in

the previous step. Use the following template.

module ALU_8(result, sum, Cout, Cin, a, b, less, m);

 output [7:0]result, sum;

 output Cout;

 input Cin;

 input [7:0]a, b, less;

 input [2:0] m;

 // implementation details are left to the student…

endmodule

4) Once you have built the 8-bit ALU, it is time to construct the 32-bit ALU. Use the

following template for this purpose.
module ALU_32(result, a, b, m);

 output [31:0]result;

 input [31:0]a, b;

 input [2:0] m;

// implementation details are left to the student…

endmodule

Testing

Write a Verilog module to test your 32-bit ALU. The module should use the data given in

Table II as a benchmark. Generate the timing diagram and estimate the maximum delay in

your design.
a b m

00000102h 00000c0fh 000

00000102h 00000c0fh 001

00000102h 00000c0fh 010

00000102h 00000c0fh 100

00000102h 00000c0fh 101

00000102h 00000c0fh 110

000f0001h 00000024h 110

000f0001h 00000024h 011

000f0001h 00000024h 111

University of Jordan

Computer Engineering Department

CPE439: Computer Organization Lab

Experiment 3: Register File

 Description

In this experiment, students have to design and test a register file with 32 32-bit registers to be

used in the design of the MIPS like processor by the end of the semester. The register file to be

designed is shown in Figure 1. It consists of 32 32-bit negative edge- triggered registers, one write

port, and two read ports. The write port requires a decoding circuit in order to determine which register

is enabled to receive the data available on the WriteData input based on the 5-bit address supplied on

WriteReg port. This is done through the 5-to-32 decoder.

For the read ports, they are essentially built using 32-bit wide 32-to-1 multiplexors. The 5-bit read

address ports, ReadReg1 and ReadReg2, are connected to the selection lines of the multiplexors to

select the contents of the addressed registers.

Figure 1. Layout of the register file.

 Procedure

The required register file is to be built using Verilog structural programming, unless otherwise stated,

by utilizing the modules available in the library Library439.v that is available online. This has to be

done in a modular fashion. We suggest that you follow the following steps in your design.

1) (Prelab.) 32-Bit Register

Instead of combining 32 negative edge-triggered flip-flops to build this unit, you may consider

using 4 instances of the 8-bit register module REG8negclk that is available in the library. Your

module should use the following template.
module REG32negclk (Q, D, clk, reset, enable);

 input clk, reset, enable;

 input [31:0] D;

 output [31:0] Q;

 // implementation details are left to the student…

endmodule

2) (Prelab.) 32-Bit Multiplexor

Due to the complexity of designing and wiring-up a multiplexor of this size, we suggest

building it using Verilog behavioral modeling. Your module should use the following template.
module Mux_32_to_1_32bit(out, s, in);

 input [1023:0] in;

 input [4:0]s;

 output [31:0]out;

 reg [31:0]out;

 always @(in or s)

 #6 case (s)

 5'd0 : out = in[31:0];

 5'd1 : out = in[63:32];

 // The student should complete all cases

 5'd30 : out = in[991:960];

 5'd31 : out = in[1023:992];

 endcase

endmodule

3) 5-to-32 Decoder

Building a decoder with this size could be cumbersome. Instead, consider building small

decoders and then cascading them to obtain the 5-to32 decoder as follows:

a) 2-to-4 Decoder
You should write a Verliog module that implements this decoder using structural modeling.

Your module should use the following template.
 module Decoder2to4 (out, in, enable);

 input enable; //active high enable

 input [1:0]in;

 output [3:0]out;

 // implementation details are left to the student……

 endmodule

b) 3-to-8 Decoder with enable

You should write a Verliog module that implements this decoder using structural modeling.

Your module should use the following template.
 module Decoder3to8 (out, in, enable);

 input enable; //active high enable

 input [2:0]in;

 output [7:0]out;

 // implementation details are left to the student……

 endmodule

c) 5-to-32 Decoder

You should write a Verliog module that implements this decoder using one instance of

Decoder2to4 module and four instances of Decoder3to8 module only.

Your module should use the following template.
 module Decoder5to32 (out, in, enable);

 input enable; //active high enable

 input [4:0]in;

 output [31:0]out;

 // implementation details are left to the student…

 endmodule

4) The Register File

Once the previous modules have been implemented, it is time now to combine them into one

block that implements the register file. Use the following template for this purpose.
 module RegFile(readdata1 ,readdata2, readreg1, readreg2,

writedata, writereg, regwrite, clk, reset);

 input regwrite, clk, reset;

 input [4:0]readreg1, readreg2, writereg;

 input [31:0]writedata;

 output [31:0]readdata1, readdata2;

 // implementation details are left to the student……

 endmodule

 Testing

Write a Verilog module to test your register file module. The test module should use the data given in

Table I as a benchmark. Generate the timing diagram and estimate the maximum delay in your

design.

Table I. Data to be used in design testing and verification.

Cycle # Clock writedata writereg regwrite readreg1 readreg2 reset
1 1 to 0 to 1 000000ffh 00011b 0 00000b 00011b 1

2 1 to 0 to 1 00000150h 00011b 1 00011b 00100b 0

3 1 to 0 to 1 00000066h 00100b 1 00011b 00100b 0

4 1 to 0 to 1 00000008h 00011b 0 00011b 01000b 0

5 1 to 0 to 1 00000040h 01000b 0 00001b 00101b 0

The waveform for the clock signal should similar to the following one:

 1

University of Jordan

Computer Engineering Department

CPE439: Computer Organization Lab

Experiment 4: Instruction and Data Memories

 Description

In this experiment, students have to design and test the instruction memory in addition to the data

memory in order to use them in the design of the MIPS like processor by the end of the semester. The

block diagrams and specifications for these units are shown Figure 1.

Figure 1. The Block Diagram for Instruction and Data Memories.

 Procedure

The required memories are to be built using Verilog behavioral programming.

1) Instruction Memory

We just read from the instruction memory and we don’t write it, and we read an instruction every

cycle so we don’t need an explicit read signal. Write a Verilog module to implement this memory

and initialize it as given in the following module. You don’t have to add further statements. Pay

attention that the memory is 32 bit wide, i.e. it is word-addressed, while the PC which contains

the byte address. So, the contents of the program counter should be divided by 4.

module Instruction_Memory(PC, instruction);

 input [31:0] PC;

 output [31:0] instruction;

 reg [31:0] instruction;

 reg [31:0] IM [255:0];

 initial begin

 IM[0] = 32'h00000010;

 IM[1] = 32'h00000020;

IM[2] = 32'h00000030;

IM[3] = 32'h00000040;

IM[4] = 32'h00000050;

end

//MIPS instruction is 4 Byte, Processor counts bytes not words

 always @ (PC)

 #15 instruction = IM[PC>>2]; //To get the correct

 //address, we divide by 4

 endmodule

 2

2) Data Memory

We write and read from the data memory, and we neither read nor write every cycle so we need

explicit read and write signals. Note that this data memory is also 32-bit wide, thus it is word-

addressed. However, the memory address formed in LW and SW instructions is the byte address.

The data memory should be initialized such that each location has a number greater than the

previous location by 1. For example, word 0 is initialized to 0x00000000, word 1 is 0x00000001,

word 2 is 0x00000002 and so on. Use for loop to do this initialization. Based on this

description, use the following template to implement this memory.

module Data_Memory(readdata, address, writedata, memwrite,

 memread, clk);

 input [31:0] address , writedata ;

 input memwrite , memread , clk;

 output [31:0] readdata;

 // implementation details are left to the student……

 endmodule

 Testing

Write the Verilog modules to test your instruction and data memory modules. The test module for the

instruction memory should use the data given in Table I as a benchmark, and the test module for the data

memory should use the data given in Table II as a benchmark.

Table I. Test data for Instruction Memory

PC
00000000h

00000004h

00000008h

0000000Ch

00000010h

00000014h

Table II. Test data for Data Memory

Cycle # Clock writedata address memread memwrite
1 1 to 0 to 1 00000000h 00000014h 0 0

2 1 to 0 to 1 000000e5h 00000014h 1 0

3 1 to 0 to 1 00000f14h 00000014h 0 1

4 1 to 0 to 1 0000000ah 00000018h 0 1

5 1 to 0 to 1 0000009eh 00000014h 1 0

6 1 to 0 to 1 0000007fh 00000018h 1 0

 1

University of Jordan

Computer Engineering Department

CPE439: Computer Organization Lab

Experiment 5: The Control Unit

 Description

In this experiment, students have to design and test the control unit to use it in the design

of the RISC-V like processor. The control unit is responsible for generating all the signals

required to control different elements of the processor datapath that will be designed in the

next experiment. The values of control signals are determined based on the opcode and

function fields of the RISC-V instructions. The block diagram and specifications for this unit

is shown in Figure 1.

Figure 1. The Block Diagram for the Control Unit.

 Procedure

In order to build this control unit, you need to find the equations for the output signals

which are shown on Table 1, then build these equations using behavioral modeling. Don’t

attempt to use logic minimization (e.g. K-maps) as the hardware has 17 inputs. Instead, use

the following approach:

1) Derive equations for signals that identify instructions from their opcodes. For example, a

signal LW which identifies a load instruction can have the following equation:

𝑳𝑾 = 𝑜𝑝6̅̅ ̅̅ ̅. 𝑜𝑝5̅̅ ̅̅ ̅. 𝑜𝑝4̅̅ ̅̅ ̅
This equation works because the load instruction is the only instruction type that has the

most significant three bits of its opcode set to zero. Follow the same approach to write the

equations for all instruction types. Notice that the first six instructions in the table share

the same opcode; hence, only one equation is needed to identify them as R-format

instructions. Similarly, the five I-format instructions share the same opcode and only one

equation is needed to identify them.

Notice that six of these signals (i.e. Iformat, LW, SW, BEQ, JAL, JALR) will also be

outputs of the control unit module because they will be needed in experiment 6.

 2

2) Derive the equations for the output signals using the signals found in the first bullet. Most

of the output signals (i.e. alusrc, pcsrc, memtoreg, regwrite, memread, memwrite, and

branch) rely only on the opcode and are not affected by the function fields. For example,

regwrite must be logic one for R-formate, I-formate, LW, JAL, and JALR instructions.

Hence, the equation of regwrite can be derived as follows:

𝒓𝒆𝒈𝒘𝒓𝒊𝒕𝒆 = 𝑅𝑓𝑜𝑟𝑚𝑎𝑡 + 𝐼𝑓𝑜𝑟𝑚𝑎𝑡 + 𝐿𝑊 + 𝐽𝐴𝐿 + 𝐽𝐴𝐿𝑅
3) For aluop[2:0] output signals, the equations depend on the opcode as well as the function

fields and can be derived by investigating the values given in Table 1. For example, the

equation of aluop[2] can be as follows:

𝒂𝒍𝒖𝒐𝒑[𝟐] = 𝑅𝑓𝑜𝑟𝑚𝑎𝑡. (𝑓𝑢𝑛𝑐3[2]̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ . 𝑓𝑢𝑛𝑐3[1] + 𝑓𝑢𝑛𝑐7[5]) + 𝐼𝑓𝑜𝑟𝑚𝑎𝑡. (𝑓𝑢𝑛𝑐3[2]̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ . 𝑓𝑢𝑛𝑐3[1])

Your module should use the following template.
module ControlUnit(aluop, alusrc, pcsrc, memtoreg, regwrite,

 memread, memwrite, branch, Iformat, LW, SW,

BEQ, JAL, JALR,

 opcode, func3, func7);

 input [6:0] opcode, func7;

 input [2:0] func3;

 output [2:0] aluop;

 output [1:0] memtoreg, pcsrc;

 output alusrc, regwrite, memread, memwrite, branch, Iformat,

LW, SW, BEQ, JAL, JALR;

 // implementation details are left to the student……

endmodule

in
st

ru
ct

io
n

o
p

co
d

e

fu
n

c3

fu
n

c7

a
lu

o
p

[2
]

a
lu

o
p

[1
]

a
lu

o
p

[0
]

a
lu

sr
c

p
cs

rc
[1

]

p
cs

rc
[0

]

m
em

to
re

g
[1

]

m
em

to
re

g
[0

]

re
g

w
ri

te

m
em

re
a

d

m
em

w
ri

te

b
ra

n
ch

OR 0110011 110 0000000 0 0 0 0 0 0 0 0 1 0 0 0

AND 0110011 111 0000000 0 0 1 0 0 0 0 0 1 0 0 0

XOR 0110011 100 0000000 0 1 0 0 0 0 0 0 1 0 0 0

ADD 0110011 000 0000000 0 1 1 0 0 0 0 0 1 0 0 0

SLT 0110011 010 0000000 1 1 0 0 0 0 0 0 1 0 0 0

SUB 0110011 000 0100000 1 1 1 0 0 0 0 0 1 0 0 0

ORI 0010011 110 - 0 0 0 1 0 0 0 0 1 0 0 0

ANDI 0010011 111 - 0 0 1 1 0 0 0 0 1 0 0 0

XORI 0010011 100 - 0 1 0 1 0 0 0 0 1 0 0 0

ADDI 0010011 000 - 0 1 1 1 0 0 0 0 1 0 0 0

SLTI 0010011 010 - 1 1 0 1 0 0 0 0 1 0 0 0

LW 0000011 010 - 0 1 1 1 0 0 0 1 1 1 0 0

SW 0100011 010 - 0 1 1 1 0 0 x x 0 0 1 0

BEQ 1100011 000 - x x x x 0 0 x x 0 0 0 1

JAL 1101111 - - x x x x 0 1 1 0 1 0 0 x

JALR 1100111 000 - 0 1 1 1 1 0 1 0 1 0 0 x

Table 1. Truth Table for the Control Unit

 3

 Testing

(Prelab.) Write the Verilog modules to test your control unit module. The test module

should use the data given in Table 2 as a benchmark. Generate the timing diagram for the

control signals. Estimate the maximum delay in your design.

Table 2. Test data for the Control Unit

opcode func3 func7

0110011b 110b 0000000b

0110011b 111b 0000000b

0110011b 100b 0000000b

0110011b 000b 0000000b

0110011b 010b 0000000b

0110011b 000b 0100000b

0010011b 110b -

0010011b 111b -

0010011b 100b -

0010011b 000b -

0010011b 010b -

0000011b 010b -

0100011b 010b -

1100011b 000b -

1101111b - -

1100111b 000b -

 1

University of Jordan

Computer Engineering Department

CPE439: Computer Organization Lab

Experiment 6: Single Cycle Implementation

Description

In this experiment, students have to construct a Verilog module for a single cycle implementation

of the RISC-V like processor that they have been working on since the beginning of the semester.

This module should include the five modules that they have constructed in the previous experiments,

namely: ALU, RegFile, Instruction_Memory, Data_Memory, and ControlUnit modules.

Additionally, few small modules that required to support specific instructions are to be designed and

implemented.

Procedure
The single cycle implementation to be designed is shown in Figure 2. In order to build this

implementation, you need to design the following components and then connect them with the

modules constructed in previous experiments. To simplify the design, these new modules are to be

implemented using behavioral modeling.

 Secondary modules

1) 32-bit Adder
Your module should use the following template: (Adder delay = 50 ns)
module Adder32bit (out, a, b);

 input [31:0] a, b;

 output [31:0]out;

 // implementation details are left to the student…

endmodule

2) Sign Extend Unit
The Sign Extend unit should be able to handle the immediate extension regardless of the

instruction’s format. Figure 1 shows the different RISC-V instruction formats. Three

instruction formats (i.e. I-type, S-type, and B-type) contain a 12-bit immediate and two

instruction formats (i.e. U-type and J-type) contain a 20-bit immediate. For example, in case

of the S-type, the Sign Extend unit needs to extract the 12-bit immediate from instruction bits

[11:7] and [31:25] then extend it by replicating bit [31] of the instruction 20 times.

In order to extract immediate correctly, the Sign Extend unit needs to identify the instruction

format. This can be done through the signals generated in the control unit which was designed

in experiment 5. Notice that the I-type format is used by the immediate instructions (e.g.

ADDI, ORI), the load instruction, and the jump-and-link-register instruction. The S-type is

used by the store instruction, the B-type is used by the branch-if-equal instruction, and the J-

type is used by the jump-and-link instruction. So and as an example, I-type input of the Sign

Extend unit can be derived as follows:

𝑰 − 𝒕𝒚𝒑𝒆 = 𝐼𝑓𝑜𝑟𝑚𝑎𝑡 + 𝐿𝑊 + 𝐽𝐴𝐿𝑅

 2

Figure 1. RISC-V Instruction Formats

Your module should use the following template:
module SignExtend (SEout, in, Iformat, LW, SW, BEQ, JAL,

 JALR);

input [31:0]in;

input Iformat, LW, SW, BEQ, JAL, JALR;

output [31:0]SEout;

 // implementation details are left to the student…

endmodule

3) Comparator
Your module should use the following template. (The delay = 10 ns)
module Comparator32bit (equal, a, b);

input [31:0]a, b;

output equal;

 // implementation details are left to the student…

endmodule

4) 32-Bit Shift Left by 1 Unit
Your module should use the following template.
module ShiftLeft32_by1(out, in);

input [31:0]in;

output [31:0]out;

// implementation details are left to the student…

endmodule

5) (Prelab.) 32 Bit 3-to-1 Multiplexor
Your module should use the following template. (The delay = 6 ns)
module Mux_3_to_1_32bit(out, s, i2, i1, i0);

 input [31:0] i2, i1, i0;

 input [1:0]s;

 output [31:0]out;

 // implementation details are left to the student…

endmodule

 3

6) (Prelab.) 32 Bit 2-to-1 Multiplexor
Your module should use the following template. (The delay = 6 ns)
module Mux_2_to_1_32bit(out, s, i1, i0);

 input [31:0] i1, i0;

 input s;

 output [31:0]out;

 // implementation details are left to the student…

endmodule

7) The Program Counter
The program counter is a 32 bit register so we can use REG32negclk module which we have

built in register file experiment.

 The Processor Module

Once you have implemented the previous modules, you can proceed and connect them to the modules

you have built in earlier experiments. Your module should use the following template.

module Processor(clk, reset, enable);

input clk, reset, enable;

//REG32negclk ProgramCounter(Q, D, clk, reset, enable);

//Instruction_Memory(PC, instruction);

//Adder32bit (out, a, b); for PC + 4

//ControlUnit(aluop, …, JALR, opcode, func3, func7);

//SignExtend (SEout, in, Iformat, LW, SW, BEQ, JAL, JALR);

//RegFile(readdata1 ,readdata2, ………, clk, reset);

//Mux_2_to_1_32bit(out, s, i1, i0); for the input b of the ALU

//ALU_32(result, a, b, m);

//ShiftLeft32_by1(out, in);

//Adder32bit (out, a, b); to calculate branch/jal target Address

//Comparator32bit (equal, a, b);

//AND (out, in1, in2);

//Mux_2_to_1_32bit(out, s, i1, i0); branch/jal address or PC + 4

//Mux_3_to_1_32bit(out, s, i2, i1, i0); select the final address

//Data_Memory(readdata , address, ……., clk);

//Mux_3_to_1_32bit(out, s, i2, i1, i0);

endmodule

 4

Testing

 (Prelab.) It is required to test your design for the entire processor by filling the instruction

memory module by the instructions sequence shown in the following table. You need to

determine the machine code for these instructions based on Table 1 of the previous experiment.

Table 1: The Content of the Instruction Memory

Address Instruction Machine Code

00 ORI x2, x0, 5 00506113h

01 LW x5, 4(x0)

02 SUB x6, x2, x5

03 ADD x6, x6, x6

04 JAL x1, 6

05 SLTI x7, x6, -4

06 BEQ x7, x0, 4

07 JALR x0, 0(x1)

08 SW x6, 4(x0)

09 LW x8, 4(x0)

10 XORI x9, x8, -1

11 AND x10, x9, x8

 (Prelab.) Next, write a Verilog test module to test your processor module, your test module

should run for 13 cycles.

Table 2: The Test Data for the Processor

Cycle # clk enable reset
1 1 to 0 to 1 1 1

2 1 to 0 to 1 1 0

3 1 to 0 to 1 1 0

4 1 to 0 to 1 1 0

5 1 to 0 to 1 1 0

6 1 to 0 to 1 1 0

7 1 to 0 to 1 1 0

8 1 to 0 to 1 1 0

9 1 to 0 to 1 1 0

10 1 to 0 to 1 1 0

11 1 to 0 to 1 1 0

12 1 to 0 to 1 1 0

13 1 to 0 to 1 1 0

The waveform for the clock signal should similar to the following one:

Your timing diagram should contain the following signals:

a) Clock, reset, and enable.

b) The output of the program counter (PC).

c) The output of the instruction memory (Instruction).

d) The output of the Sign Extend (SEout).

e) The writedata, readreg1, readreg2, and writereg for the register file.

f) The output for the registers x0, x1, x2, x5, x6, x7, x8, x9, and x10.

g) The input and the output of the ALU (a, b, m, result).

h) The output of the data memory.

 5

Figure 2. The Datapath of RISC-V Like Processor

memwrite

memread

PC

regwrite

0

1

0

1

2

1

0

Instr [31:25]

Instr [6:0]

Instr [11:7]

4

branch

alusrc

memtoreg

Instr [31:0]

pcsrc

Instr [19:15]

Instr [24:20]

2

Instruction

Memory

Instr

[31:0]
WriteReg

WriteData

ReadReg1

ReadReg2

Read

Data1

Read

Data2

Sign

Extend

Data

Memory

Address

Read

Data

WriteData

+

+

= ALU

aluop3

equal

32 32

32 32

Instr [14:12] Control

Unit

Iformat, LW, SW, BEQ, JAL, JALR
6

Shift

Left 1

2

1

0

2

 1

University of Jordan

Computer Engineering Department

CPE439: Computer Organization Lab

Experiment 7: Pipelined Implementation

Description

In this experiment, students have to construct a Verilog module for a 5-stage pipelined

implementation of a RISC-V like processor. This module should include all modules that they

have been used in the implementation of the single cycle processor in addition to few small

modules that are required to the pipelined processor.

Procedure
The pipelined implementation to be designed is shown in Figure 1. In order to build this

implementation, you need to design the following components structurally and then add them

to the processor module which we built in the previous experiment.

 Secondary modules

1) (Prelab.) The Program Counter

We need to modify the program counter to make it a 32 bit register with positive edge

trigger to enable us to make the pipelining, so you may consider using 4 instances of

the 8-bit register module REG8 that is available in the library Library439.v. Your

module should use the following template.
module ProgramCounter (Q, D, clk, reset, enable);

 input clk, reset, enable;

 input [31:0] D;

 output [31:0] Q;

 // implementation details are left to the student

endmodule

2) IF_ID Register

We need to build the pipeline register between fetch and decode stages this register is

a 96-bit register with positive edge trigger. Your module should use the following

template.

module IFID (Q, D, clk, reset, enable);

 input clk, reset, enable;

 input [95:0] D;

 output [95:0] Q;

 // implementation details are left to the student

endmodule

 2

3) ID_EX Register

We need to build the pipeline register between decode and execute stages this register

is a 153-bit register with positive edge trigger. Your module should use the following

template.

module IDEX (Q, D, clk, reset, enable);

 input clk, reset, enable;

 input [152:0] D;

 output [152:0] Q;

 // implementation details are left to the student

endmodule

4) EX_MEM Register

We need to build the pipeline register between execute and memory stages this register

is a 106-bit register with positive edge trigger. Your module should use the following

template.

module EXMEM (Q, D, clk, reset, enable);

 input clk, reset, enable;

 input [105:0] D;

 output [105:0] Q;

 // implementation details are left to the student

endmodule

5) MEM_WB Register

We need to build the pipeline register between memory and write back stages this

register is a 104-bit register with positive edge trigger. Your module should use the

following template.

module MEMWB (Q, D, clk, reset, enable);

 input clk, reset, enable;

 input [103:0] D;

 output [103:0] Q;

 // implementation details are left to the student

endmodule

 The Processor Module
Once you have implemented the previous modules, you can proceed and connect them to

the modules you have built in earlier experiments. Your module should use the following

template.

module PipelinedProcessor(clk, reset, enable);

input clk, reset, enable;

// implementation details are left to the student

endmodule

 3

Testing

 (Prelab.) It is required to test your design for the entire processor by filling the instruction

memory by the instruction sequence shown in the following table. You need to determine

the machine code for these instructions based on Table 1 in Experiment 5.

Table 1. The Content of the Instruction Memory

Address Instruction Machine Code

00 LW x1, 4(x0) 00402083h

01 LW x2, 12(x0)

02 LW x3, 20(x0)

03 LW x4, 28(x0)

04 AND x5, x1, x2

05 ORI x6, x3, 1023

06 SUB x7, x4, x2

07 XOR x8, x5, x4

08 ANDI x9, x6, 2047

09 SW x6, 8(x0)

10 LW x10, 8(x0)

11 OR x11, x7, x8

12 SLT x12, x1, x4

 (Prelab.) Next, write a Verilog test module to test your processor module, your test

module should run for 18 cycles.

Table 2. The Test Data for the Processor

Cycle # clk enable reset
1 1 to 0 to 1 1 1

2 1 to 0 to 1 1 0

3 1 to 0 to 1 1 0

4 1 to 0 to 1 1 0

5 1 to 0 to 1 1 0

6 1 to 0 to 1 1 0

7 1 to 0 to 1 1 0

8 1 to 0 to 1 1 0

9 1 to 0 to 1 1 0

10 1 to 0 to 1 1 0

11 1 to 0 to 1 1 0

12 1 to 0 to 1 1 0

13 1 to 0 to 1 1 0

14 1 to 0 to 1 1 0

15 1 to 0 to 1 1 0

16 1 to 0 to 1 1 0

17 1 to 0 to 1 1 0

18 1 to 0 to 1 1 0

 4

The waveform for the clock, reset and enable signals should similar to the following one:

Your timing diagram should contain the following signals:

a) Clock, reset, and enable.

b) PC (The output of the program counter).

c) Instruction (The output of the instruction memory).

d) The writedata, readreg1, readreg2, and writereg for the register file.

e) The output for the registers x1, x5, x6, x7, x8, x9, x10, x11, x12.

f) The input and the output of the ALU (a, b, m, result).

g) The output of the data memory.

 5

Figure 1: The Datapath of a 5-stage Pipeline RISC-V like Processor

memwrite

PC

0

1

2

1

0

Instr [31:25]

Instr [6:0]

Instr [11:7]

4

branch

alusrc

regwrite

Instr [31:0]

Instr [19:15]

Instr [24:20]

2

Instruction

Memory

Instr

[31:0]
WriteReg

WriteData

ReadReg1

ReadReg2

Read

Data1

Read

Data2

Sign

Extend

Data

Memory

Address

Read

Data

WriteData

+

+

=
ALU

equal

32 32

32

32

Instr [14:12] Control

Unit

Iformat, LW, SW, BEQ, JAL, JALR

6

Shift

Left 1

IF

/

ID

1

0

1

0

32

pcsrc

ID

/

EX

32

32

32

memtoreg

memread

2

p
cs

rc
 [

0
]

pcsrc [1]

EX

/

M

E

M

aluop 3

3

32

32

5

32

32

5

32

32

32

M

E

M

/

W

B

2

5

32

aluop

alusrc

m
em

re
a

d
m

em
w

ri
te

2

32

2

m
em

to
re

g

regwrite

32

32

Instr [19:15] 5

Instr [24:20] 5
5

5

University of Jordan

Computer Engineering Department

CPE439: Computer Organization Lab

Experiment 8: Resolving Data Hazards using Forwarding

Description

In this experiment, students have to add a forwarding unit that is capable of resolving register-

use data hazards for the pipelined processor that they implemented in experiment 7.

Register-use data hazards occur when there is dependence between consecutive instructions that

are being executed in the pipeline. Specifically, when the registers read by a later instruction are

effectively the destination for an earlier instruction, data hazards can occur. Consider for example:

add $1, $2, $3

sub $4, $1, $5

or $6, $1, $7

The last two instructions need to use the new value of $1. However, the new value is written by

the first instruction in the fifth cycle while it is needed in the second and third cycles for the second

and third instructions, respectively, as show in Figure 1 below:

Figure 1. Illustration of data hazards.

In order to obtain correct operation, one solution would be to stall the pipeline for two cycles to

wait until the value is written to the register file, as shown in Figure 2:

Figure 2. Solving data hazard by stalling the pipeline.

However, this solution affects the performance of the pipeline. Alternatively, we know that the

new value for $1 is computed and stored in the EX/MEM register by the end of the third cycle. So,

we can use this value before it is written to the register file by forwarding to the ALU input and use

it instead of the old value(s). Note how the value should be forwarded from the EX/MEM for the

second instruction and from the MEM/WB register for the third instruction to the ALU inputs as

shown in Figure 3. In other words, the inputs to the ALU are no longer the values read from the

register file when the data hazard exists.

Figure 3. Solving data hazard by forwarding.

The forwarding hardware is essentially a logic circuit that consists of a set of comparators that

compare the destination and source registers for consecutive instructions in addition to a set of

multiplexers connected to the ALU inputs as shown in Figure 4.

If the source register(s) (rs1 and/or rs2) for some instruction that has been decoded (stored in the

ID/EX register) matches the destination register for the instruction that has passed the execute stage

(stored in the EX/MEM register), then the input to the ALU should be the ALU result found in the

EX/MEM register instead of the values read for the conflicting instruction in the decode stage. The

same argument holds for the case when the source register(s) for an instruction matches the

destination register for an earlier instruction that has finished the memory stage (stored in the

MEM/WB register).

Basically, the forwarding unit hardware should implement the following conditions

1) Forwarding from the memory stage:

a. if (EX/MEM.RegWrite && (EX/MEM.RegRd == ID/EX.RegRs1) &&

 (EX/MEM.RegRd != 0))

 ForwardA[0] = 1;

b. if (EX/MEM.RegWrite && (EX/MEM.RegRd == ID/EX.RegRs2) &&

 (EX/MEM.RegRd != 0))

 ForwardB[0] = 1;

2) Forwarding from the write-back stage:

a. if (MEM/WB.RegWrite && (MEM/WB.RegRd == ID/EX.RegRs1) &&

 ((EX/MEM.RegRd != ID/EX.RegRs1) || (EX/MEM.RegWrite==0)) &&

 (MEM/WB.RegRd != 0))

 ForwardA[1] = 1;

b. if (MEM/WB.RegWrite and (MEM/WB.RegRd == ID/EX.RegRs2) and

 ((EX/MEM.RegRd != ID/EX.RegRs2) || (EX/MEM.RegWrite==0)) &&

 (MEM/WB.RegRd != 0))

 ForwardB[1] = 1;

The ForwardA and ForwardB signals are outputs from the forwarding unit and are used to select the

proper input to the ALU.

Figure 4. Incorporating Forwarding within the Pipeline.

Procedure

In order to incorporate the forwarding unit in your design, you need to implement the forwarding

unit and use 32-bit 3-to-1 multiplexers at the ALU inputs. Then, you should wire these new modules

with the pipelined implementation as shown in Figure 4.

1) (Prelab.) 5-Bit Comparator

You need to write a structural Verilog module for 5-bit comparator. Your module should use

the following template:
module Comparator5bit (equal, a, b);

 input [4:0]a, b;

 output equal;

 // implementation details are left to the student

 endmodule

2) The Forwarding Unit

You need to build the forwarding unit structurally using 5-bit comparator and any necessary

gates. Your module should use the following template:
 module ForwardingUnit(ForwardA, ForwardB, EXMEM_Rd,

 MEMWB_Rd, IDEX_Rs1, IDEX_Rs2,

 EXMEM_RegWrite, MEMWB_RegWrite);

 input [4:0] EXMEM_Rd, MEMWB_Rd, IDEX_Rs1, IDEX_Rs2;

 input EXMEM_RegWrite, MEMWB_RegWrite;

 output [1:0]ForwardA, ForwardB;

 // implementation details are left to the student

 endmodule

3) The processor module

You need to modify the pipelined processor module by adding the forwarding unit and ALU

multiplexers and any needed modifications.

Testing

 (Prelab.) Write the Verilog module to test your forwarding unit. The test module for this unit

should use the data given in Table 1 as a benchmark,

Table 1. Test data for Forwarding Unit

EXMEM_Rd MEMWB_Rd IDEX_Rs1 IDEX_Rs2 EXMEM_RegWrite MEMWB_RegWrite

5'b00001 5'b00001 5'b00001 5'b00001 0 0

5'b00001 5'b00011 5'b00001 5'b00000 1 0

5'b00001 5'b00001 5'b00001 5'b00001 0 1

5'b00011 5'b00010 5'b00101 5'b00010 1 1

5'b00101 5'b00101 5'b00101 5'b00110 1 1

 (Prelab.) Next, it is required to test your design for the pipelined processor by filling the

instruction memory module by the instruction sequence shown in Table 2.

Table 2. The Content of the Instruction Memory

Address Instruction Machine Code

00 LW x1, 4 (x0) 00402083h

01 LW x2, 12(x0)

02 LW x3, 20(x0)

03 LW x4, 28(x0)

04 ADD x5, x2, x1

05 AND x6, x5, x5

06 SLTI x6, x5, 3

07 OR x7, x2, x4

08 XOR x7, x2, x4

09 ADD x8, x7, x7

 (Prelab.) Next, write a Verilog test module to test your processor module

 Your Timing diagram should contain the following signals:

a) PC (The output of the program counter).

b) Instruction (The output of the instruction memory).

c) The writedata, readreg1, readreg2, and writereg for the register file.

d) The output for the registers x5, x6, x7, x8.

e) The input and the output of the ALU (a, b, m, result).

f) The output of forwarding unit (ForwardA, ForwardB).

 Calculate number of cycles needed to execute the above code.

 1

University of Jordan

Computer Engineering Department

CPE439: Computer Organization Lab

Experiment 9: Resolving Control Hazards

Description

In the previous experiment, students worked on resolving one out of several cases where

data dependencies between instructions may cause data hazards in pipelining. In this

experiment, students have to modify their pipelining implementation to accommodate for a

new type of pipelining hazards; namely, control hazards.

Control hazards arise when executing program flow control instructions such as beq, jal,

and jalr. After these instructions are fetched (i.e. stored in the IF/ID register), the processor

starts fetching the following instruction (i.e. instruction at PC+4). In case of beq instruction,

fetching the instruction at PC+4 might not be correct if the condition evaluates to true (i.e.

equal = 1) which is done by the comparator in the decode stage. Instead, the processor should

have fetched the instruction pointed-to by the branch target address (i.e. 𝑃𝐶 𝑜𝑓 𝑏𝑟𝑎𝑛𝑐ℎ +
𝑆𝑖𝑔𝑛𝐸𝑥𝑡𝑒𝑛𝑑(𝑖𝑚𝑚𝑒𝑑𝑖𝑎𝑡𝑒) × 2) which is computed by the adder in the decode stage.

In case of unconditional flow instructions (i.e. jal and jalr), fetching the instruction at PC+4

is always wrong since the processor is supposed to fetch the instruction pointed-to by the target

address. Notice the target address of jal (i.e. 𝑃𝐶 𝑜𝑓 𝑗𝑎𝑙 + 𝑆𝑖𝑔𝑛𝐸𝑥𝑡𝑒𝑛𝑑(𝑖𝑚𝑚𝑒𝑑𝑖𝑎𝑡𝑒) × 2) is

computed using the adder in the decode stage (i.e. same as beq instruction). On the other hand,

the target address of jalr (i.e. (𝑟𝑠1) + 𝑆𝑖𝑔𝑛𝐸𝑥𝑡𝑒𝑛𝑑(𝑖𝑚𝑚𝑒𝑑𝑖𝑎𝑡𝑒)) is computed by the ALU in

the execute stage.

In order to resolve these hazards, all instructions that are fetched wrongly have to be

removed (flushed) from the pipeline. Since beq and jal instructions are resolved in the decode

stage (i.e. branch condition is evaluated and target address is computed), we only need to flush

the instruction in the fetch stage. On the other hand, jalr instruction is resolved in the execute

stage and the instructions in the fetch and decode stage must be flushed.

The flushing is implemented by resetting the stage register(s) when the control hazard is

detected. For beq instruction, the control hazard is detected when the beq is in the decode stage

(i.e. branch control signal = 1) and the comparator output (i.e. equal) is 1. For jal instruction,

the control hazard is detected when the jal is in the decode stage (i.e. pcsrc[0] = 1). Hence, for

beq and jal instructions we only need to reset the IF/ID register in order to flush the instruction

in the fetch stage. The required hardware to handle control hazards of beq and jal instructions

is shown in Figure 1.

For jalr instruction, the control hazard is detected when the jalr is in the execute stage (i.e.

pcsrc[1] in execute stage = 1) and we need to reset the IF/ID and ID/EX registers in order to

flush the instructions in the fetch and decode stages, respectively. The required hardware to

handle control hazards of jalr instruction is also shown in Figure 1.

 2

Notice that our hardware already selects one of three options when updating the PC value:

PC + 4, target address of beq/jal computed in the decode stage, and target address of jal

computed in the execute stage.

Procedure

1) The processor module

You need to modify the pipelined processor module by adding the OR gates required

to resolve the control hazards and make the needed modifications.

Figure 1: Resolving Control Hazards

memwrite

PC

Instr [31:25]

Instr [6:0]

Instr [11:7]

4

branch

alusrc

regwrite

Instr [31:0]

Instr [19:15]

Instr [24:20]

2

Instruction

Memory

Instr

[31:0]
WriteReg

WriteData

ReadReg1

ReadReg2

Read

Data1

Read

Data2

Sign

Extend

+

+

=
equal

32 32

32

32

Instr [14:12] Control

Unit

Iformat, LW, SW, BEQ, JAL, JALR

6

Shift

Left 1

IF

/

ID

1

0

1

0

32

pcsrc

ID

/

EX

memtoreg

memread

2

p
cs

rc
 [

0
]

pcsrc [1]

EX

/

M

E

M

aluop 3

3

32

32

5

32

32

32
2

aluop

a
lu

sr
c

32

Instr [19:15] 5

Instr [24:20] 5

reset

re
se

t
F

lu
sh

1

F
lu

sh
2

0

1

ALU

32
0

1

2

0

1

2

Forwarding Unit

2
2

ForwardBIDEX_Rs2

IDEX_Rs1

5

ForwardA

 3

Testing

 (Prelab.) Test your design for the pipelined processor by filling the instruction memory

by the instruction sequence shown in Table 1.

Table 1. The Content of the Instruction Memory

Address Instruction Machine Code

00 LW x1, 4(x0) 00402083h

01 LW x2, 12(x0)

02 LW x3, 20(x0)

03 LW x4, 28(x0)

04 AND x5, x1, x3

05 ORI x6, x5, 1023

06 SUB x8, x4, x2

07 JAL x1, 8

08 XOR x7, x5, x6

09 SW x7, 8(x0)

10 BEQ x8, x4, 10

11 ADDI x8, x8, 3

12 SW x5, 8(x0)

13 SW x6, 24(x0)

14 JALR x0, 0(x1)

15 SUB x9, x8, x3

16 SLT x10, x9, x4

 (Prelab.) Next, write a Verilog test module to test your processor module

 Your timing diagram should contain the following signals:

a) The output of the program counter (PC)

b) The output of IFID register and IDEX register.

c) The output for the registers R5, R6, R7, R8, R9, R10.

d) The output of forwarding unit (ForwardA, ForwardB).

e) Flush1 and Flush2.

f) The writedata and memwrite for the data memory.

 Calculate number of cycles needed to execute the above code.

CPE232 Basic MIPS Pipelining 1

CPE 335
Computer Organization

Basic MIPS Pipelining – Part II

Dr. Iyad Jafar

Adapted from Dr. Gheith Abandah slides

http://www.abandah.com/gheith/Courses/CPE335_S08/index.html

http://www.abandah.com/gheith/Courses/CPE335_S08/index.html

CPE232 Basic MIPS Pipelining 2

Pipelining the MIPS ISA

 What makes it easy
 all instructions are the same length (32 bits)

- can fetch in the 1st stage and decode in the 2nd stage

 few instruction formats (three) with symmetry across formats

- can begin reading register file in 2nd stage

 memory operations can occur only in loads and stores

- can use the execute stage to calculate memory addresses

 each MIPS instruction writes at most one result (i.e.,

changes the machine state) and does so near the end of the

pipeline (MEM and WB)

 What makes it hard
 structural hazards: what if we had only one memory?

 control hazards: what about branches?

 data hazards: what if an instruction’s input operands depend

on the output of a previous instruction?

CPE232 Basic MIPS Pipelining 3

Can Pipelining Get Us Into Trouble?

 Yes: Pipeline Hazards

 structural hazards: attempt to use the same resource by two

different instructions at the same time

 data hazards: attempt to use data before it is ready

- An instruction’s source operand(s) are produced by a prior

instruction still in the pipeline

- Note that data hazards can come from R-type instructions or lw

instructions

 control hazards: attempt to make a decision about program

control flow before the condition has been evaluated and the

new PC target address calculated

- branch instructions

 Can always resolve hazards by waiting

 pipeline control must detect the hazard

 and take action to resolve hazards

CPE232 Basic MIPS Pipelining 4

Structural Hazard – Register File

I

n

s

t

r.

O

r

d

e

r

Time (clock cycles)

Inst 1

Inst 2

A
L

UIM Reg DM Reg

A
L

UIM Reg DM Reg

A
L

UIM Reg DM Reg

A
L

UIM Reg DM Reg

Fix register file

access hazard by

doing reads in the

second half of the

cycle and writes in

the first half

add $1,

add $2,$1,

clock edge that controls

register writing

clock edge that controls

loading of pipeline state

registers

CPE232 Basic MIPS Pipelining 5

Data Hazards with Register Usage

A
L

UIM Reg DM Reg

A
L

UIM Reg DM Reg

A
L

UIM Reg DM Reg

 Dependencies backward in time cause hazards

add $1,

sub $4,$1,$5

Or $6,$1,$7

 Register-use data hazard

CPE232 Basic MIPS Pipelining 6

stall

stall

Fixing Register-use Data Hazards with Stalls

I

n

s

t

r.

O

r

d

e

r

add $1,

A
L

UIM Reg DM Reg

sub $4,$1,$5

or $6,$1,$7

A
L

UIM Reg DM Reg

A
L

UIM Reg DM Reg

CPE232 Basic MIPS Pipelining 7

Fixing Data Hazards with Forwarding

A
L

UIM Reg DM Reg

A
L

UIM Reg DM Reg

A
L

UIM Reg DM Reg

A
L

UIM Reg DM Reg

A
L

UIM Reg DM Reg

I

n

s

t

r.

O

r

d

e

r

add $1,

sub $4,$1,$5

or $6,$1,$7

xor $4,$1,$5

or $8,$1,$9

CPE232 Basic MIPS Pipelining 8

Forwarding Implementation

CPE232 Basic MIPS Pipelining 9

Pipelining Hazard – Example 1

 Consider the following code segment in C

A = B + E

C = B + F

(1) Generate the MIPS code assuming that variables
A,B, C, E, and F are in memory and addressable with
offsets 0, 4, 8, 12, and 16 from $t0

(2) Find all the data hazards and determine the number
of cycles required to run the code .

(3) Can you reorder the code to reduce the stalls ?

* Assume the forwarding discussed so far is
implemented

CPE232 Basic MIPS Pipelining 10

Pipelining Hazard – Example 1

MIPS Code

lw $t1, 4($t0) # loads B

lw $t2, 12($t0) # loads E

add $t3, $t1, $t2 # A = B + E

sw $t3, 0($t0) # stores A

lw $t4, 16($t0) # loads F

add $t5, $t1, $t4 # C = B + F

sw $t5, 8($t0) # stores C

we have two load-use hazards  add two cycles

CPE232 Basic MIPS Pipelining 11

Pipelining Hazard – Example 1

 Ideally, we need 11 (5 + 6) cycles to execute the code

 with the presence of 2 stalls, we need 13 cycles

 Reordered code

lw $t1, 4($t0) # loads B

lw $t2, 12($t0) # loads E

lw $t4, 16($t0) # loads F

add $t3, $t1, $t2 # A = B + E

sw $t3, 0($t0) # stores A

add $t5, $t1, $t4 # C = B + F

sw $t5, 8($t0) # stores C

 Now we don’t have load-use hazards; we need 11 cycles

CPE232 Basic MIPS Pipelining 12

Pipelining Hazard – Example 2

 Assume that the pipelined MIPS processor without
forwarding is used to run a program with the following
instruction mix: 20% loads, 20% store, and 60% ALU.
Then compute the average CPI given that

 10% of the ALU instructions result in load-use hazards.

 15% of the ALU instructions result in read-before-write hazards.

 Ideally, the average CPI is 1 for each instruction

 With no forwarding

Load-use hazards add two cycles

Register-use hazards add two cycles

 Average CPI = 0.2 x 1 + 0.2 x 1 + 0.75 x 0.60 x 1 +

0.1 x 0.60 x 3 + 0.15 x 0.60 x 3 = 1.30

