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What is Verilog?

e |t Is a Hardware Description Language ( HDL ).

e Two major HDL languages:

- Verilog
- VHDL

e Verilog is easier to learn and use (It i1s like the C
lanquage).
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Cont.

Introduced in 1985 by (Gateway Design Systems)
Now, part of (Cadence Design Systems).

1990: OVI (Open Verilog International).

1995: IEEE Standard.

Simulator:
Verilogger Pro, from Synapticad INC.




Why Use Verilog?

Digital systems are highly complex.
=» Schematic is useless (just connectivity)

Behavioral Constructs:
- Hide implementation details.
- Arch. Alternatives through simulations.
- Detect design bottlenecks.
( BEFORE DETAILED DESIGN BEGINS)

Automated Tools compile behavioral models to actual circuits.



| exical Conventions

® Closeto C/ C++.

e Comments:
Ll Single lTine comment
/E multiple

lines
Commctibs
e Case Sensitive
e Keywords:
- Reserved.
- lower case.
- Examples: module, case, initial, always.




e L

umbers:

e —— /

<size>’<base format><number>

Size: No. of bits (optional).

Base format:

Examples:
549
'h 8FF
15765
4'b11
3'h10x
51d3
-4'h11

=» b: binary

= d : decimal

=» 0 : octal

=» h : hexadecimal
(DEFAULT IS DECIMAL)

// decimal number

// hex number

// octal number

// 4-bit binary number 0011

// 3-bit binary number with least significant bit unknown
// B-bit decimal number

// 4-bit two's complement of 0011 or 1101
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Identifiers:

- Start with letter or ().

- A combination of letters, digits, ($), and( ).
- Up to 1024 characters.




= Program Structure

Verilog describes a system as a set of modules.
Each module has an interface to other modules.
Usually:
- Each module is put in a separate file.
- One top level module that contains:

=>» Instances of hardware modules.

=>» Test data.
Modules can be specified:

- Behaviorally.

- Structurally.

Modules are different from subroutines in other languages
(never called).




Physical Data Types

e Reqisters (reg):
- Store values
reg X; // 1l-bit register
reg [7:0] A; // 8-bit register
e Wires (wire ):
- Do not store a value.
- Represent physical connections between entities.

wire X;

wire [7:0] A;




/
reg and wire data objects may have a value of:
- 0 : logical zero
- 1 : logical one
- X . unknown
- Z : high impedance

Registers are initialized to x at the start of simulation.
Any wire not connected to something has the value x.

How to declare a memory in verilog?
el = o i aai B el SV e Ve e e s e e e e

oo o TR /
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Operators

Binary Arithmetic Operators:

Operator ~ Name Comuments

Addition

Subtraction

Multiplication

Division Divide by zero produces an X, 1. €., unknown,
Modulus




Relational Operators:

Operator  Name Comments
> Greater than

Greater than or equal

Less than

Less than or equal
Logical equality
Logical inequality




L_oqgical Operators:

Operator Name
| Logical negation

&8 Logical AND
| Logical OR




Bitwise Operators:

Operator Name Comments
Bitwise negation
Bitwise AND
Bitwise OR
Bitwise XOR
Bitwise NAND
Bitwise NOR
Equivalence Bitwise NOT XOR




= Other operators:

Concatenation:
Pl B

Shift Left:
=2 - T ot >

Conditional:
=P B g B




|F Statement

e Similar to C/C++.
* Instead of { } , use begin and end.
if (A == 4)
begin
B 25
end
else
begin
B
end




Case Statement

e Similarto C/ C++
* No break statements are needed.

case (A)

1'bz: $display("Ais high impedance");
1'bx: $display("A is unknown");
default: $display("A = %b", A);
endcase
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Repetition for, while and repeat Statements

The £orx statement is very close to C's for statement except
that the ++ and -- operators do not exist in Verilog. Therefore,

we needtouseil=1+1.
Fori = 0 = h = )
Sdisplay ("i= %0d", 1i);

The while statement acts in the normal fashion.
T =)
while (1 < 10)
begin
Sdisplay ("i=
e e E e

end




Example: NAND Gate

module  NANE (out, 1n’2,; 1nlj:
THPUE TR

QIERIEE S OTEE;
assign #2 out = ~(inl & in2);// Continuous
// Assignment

endmodule




AND Gate

module AND (out, i1in2,1inl);
EMOLEE e i
ouEput: “out;
wire wl;
NAND nl(wl, 1n2,
NAND nZ2 (out, wl, wl) ;

endmodule




module TestAND;
regiiind ands
wire out;

AND al (out, in2, inl);

initial begin :init
in2=0; inl=0;

#10 in2=0; inl=1;

#10 in2=1; inl=0;

#10 in2=1; inl=1;

0

end

initial begin

Sdisplay ("Time ' ' SN

Smonitor ("%$0d 7 SR S s A 1 = NSl BA B ARt i Rt e o b o e
end

endmodule




Output

Time 1n2 1n1 out
0

0
4 O
10 O
1
1
1

O X

20
30

O O
1 O
O O
1 O
34 11




4-to-1 Multiplexor




Structural Gatelevel model

modike SNt eIt tout Sy apdy mindvirang painlsrrvene e B0 Sen BN
OIFEPUEeOE:
TE Al S AE B 1 ) B A A O RE el O At O 0 B R R D BRy S A E PA a SR
wire notrentrll,; notientell, W, X, Vp 27

INV n0 (not cntrl0O, cntrl0);
INV R SR BN e e U e SR e B o

AND3 a0 AR R e e B e e e e R
AND3 al 4 ] G b e (@ A B B Ve o o v S Al e S O )
AND3 a2 TRZyErentasieimn e
AND3 a3 1513 050 SRR o o s il g3 P Ve @1 o o e Iy B

OR4 ol Wy Ry P T s
endmodule




Behavioral Gate-Level Model (RTL)

modle MU e oty Ensererin i o ainlae i n O e el On e nee B
SRR A
S5 @y AT i Mg SAia by o 8 e s 0 D2 e £ o B S o 1 o B el o o i e O

e M@ e A N R Ve Aol el o Do S Do o BN Yol I S M G
By ey oM oy s i e B o Vo¥ve N A i o I O W B
|

(in2 & S e B e e )
(in3 & ok 0 B g Sy o M ) 0 A O P
endmodule




Behavioral Model

i o RBEN SR IR A b e R B e AR s aNe e AR I OB el i

BILE R el
JNeT e DRI nAG A Mg Bl A b g e P g R ol e N e R oA g e s LA G o

B HOLIE e Behavioral code: output out must
now be of type reg as it is assigned
values in a procedural block.

2 R o e A b e B e S e B S b S e o Bt dp e Y s a e
e e et e e el 0
Sl I R e b N e R B g O
o O B R P RV R P
A ol U S S b e T
A O B e e N A rion R o
endcase
endmodule




Test Module

module test;
ECgein(y sl andenie3vrs et (s
wire out;

MUX 4x1 mux4 1(out,i3,i2,il,i0,s0,s1);

initial begin: stop at
#650; S$finish;
end

Pnaiailath e gainyatiindit
i0=0; 1i1=0; 12=0; 1i3=0; s0=0; s1=0;

Sdisplay ("*** Mulitplexer 4 x 1 ***x");
Sdisplay("Time i3 i2 il i0
Smonitor ("%0d %b $b %b

end

always #10 i0 = ~1i0;
always #20 il = ~il;
always #40 i2 =D
always #80 i3 = ~i3;
always #160 s0 = ~s0;
always #320 sl = ~sl;

endmodule

$HoY;

S EAME Y3 A e 2[R QeSS G T ) s




The Output

687.0ns I-d.l]l]l]nsl Ons |5[Jns |100n5 |150ns |2[J[]ns |250ns |300ns |350ns |400ns |45CIns |5[]0ns |55CIns |Eﬂﬂns |EEUn5
I | I I | I | | I I | I | L1 11 I | L1 11 I | | I | I | I | I | 11
test.i0

test i1

test.i?

test.i3

test.s1

test.s0

test out




T - Flip Flop

T Asynchronous T Flip-flop with reset (Negative-edge trigger)
modues TP 0w ralkermraagat g

e N B e e e e D

O EPUEEDE

S =Y RO
always @ (negedge clk or posedge reset)

begin
#2;
1f (reset == 1)
G i
else 1f (T == 1)
G o
end
endmodule




2-bit Counter

mociile counter7bit (O ek
e [ e
input c¢lk, reset;

reset) ;

FATER (O T ek = vaoatb )
EEE L0001, L bl clk . reself )
Ol

EREEE ol bl OF 0] recef )
endmodule




modiElemproenitess

reg reset, clk ;
wire [1:0] Q;

counter2bit f£1(Q, clk, reset);

R A A b N R P or R e A e

ATl e Rl G S o M e I et o BT e e

clk = 1'b0;
#5 reset = 1'bl ;
#10 reset = 1'b0 ;
Sdisplay ("Time
SmonEto R E0E
end
always #10 clk = ~clk;

endmodule



University of Jordan
Computer Engineering Department
CPE439: Computer Organization Lab

Experiment 1: Introduction to Verilogoer Pro

Objective:

The objective of this experiment is to introduce the student to the environment of the Verilog
simulator, and write simple programs.

The VeriLogger Pro Environment:

When you start the VeriLogger Pro program, you will notice that there are four windows.
The upper left is the project window; in this window you select the HDL source files to be
simulated. The upper right window enables the programmer to add a free parameter. The lower left
window is the place where you will see the timing diagram that shows the waveforms of the
signals monitored throughout the simulation. The lower right window is the place where the
contents of the log file can be seen, and the errors of compilation are displayed.

How to write a program that describes the operation of AND and NAND gates?
Perform the following steps:

1. Open a new project file by selecting “New HDL Project” from the Project menu. Name the
project “AND_project.hpj”. The name is given when you select “Save HDL Project As...”
from the Project menu.

2. Open a new source file by selecting “New HDL File” from the Editor menu. A new
window should appear in which you should copy the following Verilog code.

module NAND (out, inl, in2);
input inl, in2;
output out;

assign #2 out = ~ (inl & in2);
endmodule

3. Save this new HDL file as “NAND.v” by selecting “Save HDL File As...” from the Editor
menu.

4. Add NAND.v to your HDL project by selecting the project window, right click in the
workspace of this window, and select “Add HDL File(s)...”.

5. Similar to Steps 2 through 4, add to your project a new file named AND.v that contains
following code.

module AND (out, inl, in2);
input inl, in2;
output out;
wire wl;

NAND N1 (wl, inl, 1inZ2);
NAND N2 (out, wl, wl);

endmodule



6. Now you need to test your AND and NAND modules and verify that they operate properly.
Similar to Steps 2 through 4, add to your project a new file named test.v that contains
following code.

module test;
reg inl, in2; //declaring inl and in2 as registers for inputs
wire andout; //declaring andout as wire for output

AND nl (andout,inl,in2); //Creating an instance of the module AND

initial begin: stop_at //This initial statement selects
#100; S$finish; //an appropriate simulation period
end //We choose it here to be 250 time units

initial begin :init
inl=0;
in2=0; //Initially set inl and in2 to zero

/* The $display statement prints the sentence between quatations in the
log file. It Operates in the same way the printf function does in the C
language.*/

Sdisplay ("*** Table of changes ***");

Sdisplay ("Time inl in2 andout") ;

/* The monitor statement prints the values of the different parameters
whenever a change in the value of one of them or more occurs.*/

Smonitor ("%$0d b b %b",Stime, inl, in2, andout) ;
end

/* We use this always construct to continuously vary the values of
the input registers inl and in2, in order to have a simulation whose
output continuously changes.*
always #10 inl = ~inl;
always #20 in2 = ~in2;

endmodule

7. After you have added the required files start the program simulation by clicking on the

green arrow P in the center of the Tool bar. The results should appear in the log file and the
waveforms should appear in the timing diagram.
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Experiment 2: 32-Bit ALU

Description

In this experiment, students have to design and test a 32-bit ALU with the block diagram
shown in Figure 1 and the operations listed in Table I. The design should be done using
Verilog structural programming by utilizing the modules available in the library Library439.v
that is available online. It is advised that you follow the modular approach in your design, in
which you start by designing small modules from which you build the larger modules.

m (operation) | Function

— 000 Or
A 32 001 And
010 Xor
>ALU +>32 result 011 Add
100 Nor
7 > 101 Nand
B 32 3 110 Slt (Set on less than)
. 111 Subtract
m (operation)
Figure 1. 32-bit ALU block diagram Table I. Arithmetic and logic operations
supported by the ALU
Procedure

1) Using modular design, you may start the design of the 32-bit ALU by considering the
implementation of a 1-bit ALU shown in Figure 2. In order to build this circuit, most
of the primitive and basic gates are available in the library Library439.v. However,
you have to design the 1-bit full adder and the 8-to-1 multiplexer according the
following specifications. Keep in your mind that your Verilog modules for these units
should be structural.

a) (Prelab.)1-bit FA
The block diagram and truth table for the full adder are shown in Figure 3.
You should write a Verilog structural module to implement this logic circuit
using the following template.

module FullAdder (Cout, sum, a, b, Cin);

output sum, Cout;
input Cin, a, b;

endmodule



Cin

-ﬂ_ v — resull

less

ml Cout  s@im m2. Lo

Figure 2. 1-bit ALU.

. a| b [CinjCout|Sum
Cin
l ofoJofj o] oO
ofof1f 0| 1
a _, of1{of o | 1
1-bit Full oOf1j]1Q§3 110
Adder —» sum 1{01]0 0 1
b __ | tlof1f 1o
1{1]0f 11]0
11111 1] 1
Cout

Figure 3. 1-bit FA block diagram and truth table.

b) (Prelab.) 8-to-1 Multiplexor
You should write a Verliog module that implements this multiplexor using structural
modeling. Your module should use the following template.

module Mux 8 to 1 (result, s, in);
output result;
input [2:0] s;
input [7:0] in;

// implementation details are left to the student..
endmodule

2) Once you have built the full adder and the multiplexor, you can now move to the next
level by writing the Verilog module that implements the 1-bit ALU using the
following template.

module ALU 1 (result, sum, Cout, Cin, a, b, less, m);
output result, sum, Cout;
input Cin, a, b, less;
input [2:0] m;

// implementation details are left to the student..
endmodule



3) After you have designed the 1-bit ALU, you may choose to use 32 copies of this
module to build the large 32-bit ALU. However, such approach is time consuming
and requires a lot of effort in wiring-up these instances. Instead, consider building the
32-bit ALU using 8-bit ALUs. In this case you need to wire only 4 instances. So,
consider writing a Verilog module for an 8-bit ALU using the 1-bit ALU designed in

the previous step. Use the following template.

module ALU 8(result, sum, Cout, Cin, a, b, less, m);
output [7:0]result, sum;
output Cout;
input Cin;
input [7:0]la, b, less;
input [2:0] m;

// implementation details are left to the student..
endmodule

4) Once you have built the 8-bit ALU, it is time to construct the 32-bit ALU. Use the
following template for this purpose.
module ALU 32 (result,

a, b, m);

output T31:O]result;
input [31:0]a, b;
input [2:0] m;

// implementation details are left to the student..
endmodule

Testing

Write a Verilog module to test your 32-bit ALU. The module should use the data given in
Table Il as a benchmark. Generate the timing diagram and estimate the maximum delay in
your design.

a b m
00000102, 00000cO£, 000
00000102, 00000cO£, 001
00000102, 00000cO£, 010
00000102, 00000cO£, 100
00000102, 00000cO£, 101
00000102, 00000cO£, 110
000£0001, 00000024, 110
000£0001, 00000024, 011
000£0001, 00000024, 111




University of Jordan
Computer Engineering Department

CPE439: Computer Organization Lab
Experiment 3: Register File

e Description

In this experiment, students have to design and test a register file with 32 32-bit registers to be
used in the design of the MIPS like processor by the end of the semester. The register file to be
designed is shown in Figure 1. It consists of 32 32-bit negative edge- triggered registers, one write
port, and two read ports. The write port requires a decoding circuit in order to determine which register
is enabled to receive the data available on the WriteData input based on the 5-bit address supplied on
WriteReg port. This is done through the 5-to-32 decoder.

For the read ports, they are essentially built using 32-bit wide 32-to-1 multiplexors. The 5-bit read
address ports, ReadRegl and ReadReg2, are connected to the selection lines of the multiplexors to
select the contents of the addressed registers.

Read H.r'.:_]

4

of— 0 ={En 12 T
3z Register @ e S ]
et = )
! =(En a2
a2 Heglster 1 - . =
* - =D
WriteRey & Decoder . -‘_2
ritcReg o= . 31 = ssesses : ™ == Readldatal
En 32
Register 30 - -| 30
10} 3z
M D
RegWrite En =/ En iz
" i 17 Register 3 veigp——t—a= | 3]
. 0 = D l\-._./l
WriteData 4 >
2 Il/.---,\.I
= 0
g
32
1 g HeadData2
=| 30
)
F%
Read Reg2

Figure 1. Layout of the register file.



e Procedure

The required register file is to be built using Verilog structural programming, unless otherwise stated,
by utilizing the modules available in the library Library439.v that is available online. This has to be
done in a modular fashion. We suggest that you follow the following steps in your design.

1) (Prelab.) 32-Bit Register
Instead of combining 32 negative edge-triggered flip-flops to build this unit, you may consider
using 4 instances of the 8-bit register module REG8negclk that is available in the library. Your
module should use the following template.
module REG32negclk (Q, D, clk, reset, enable);
input clk, reset, enable;
input [31:0] D;
output [31:0] Q;
// implementation details are left to the student..
endmodule

2) (Prelab.) 32-Bit Multiplexor

Due to the complexity of designing and wiring-up a multiplexor of this size, we suggest
building it using Verilog behavioral modeling. Your module should use the following template.
module Mux 32 to 1 32bit(out, s, in);
input [1023:0] in;

input [4:0]s;
output [31:0]out;
reg [31:0]out;

always @(in or s)

#6 case (s)
5'd0 : out = in[31:0];
5'dl : out in[63:32];
// The student should complete all cases
5'd30 : out = in[991:960];
5'd31 : out in[1023:9927;

endcase

endmodule

3) 5-t0-32 Decoder

Building a decoder with this size could be cumbersome. Instead, consider building small
decoders and then cascading them to obtain the 5-to32 decoder as follows:

a) 2-to-4 Decoder
You should write a Verliog module that implements this decoder using structural modeling.
Your module should use the following template.
module Decoder2to4 (out, in, enable);
input enable; //active high enable
input [1:0]in;
output [3:0]out;
// implementation details are left to the student...
endmodule



b) 3-to-8 Decoder with enable
You should write a Verliog module that implements this decoder using structural modeling.
Your module should use the following template.
module Decoder3to8 (out, in, enable);
input enable; //active high enable
input [2:0]1in;
output [7:0]out;
// implementation details are left to the student...
endmodule

c) 5-to-32 Decoder
You should write a Verliog module that implements this decoder using one instance of
Decoder2to4 module and four instances of Decoder3to8 module only.
Your module should use the following template.
module Decoder5to32 (out, in, enable);
input enable; //active high enable
input [4:0]11in;
output [31:0]out;
// implementation details are left to the student..
endmodule

4) The Register File

Once the previous modules have been implemented, it is time now to combine them into one
block that implements the register file. Use the following template for this purpose.
module RegFile (readdatal ,readdata2, readregl, readreg2,
writedata, writereg, regwrite, clk, reset);

input regwrite, clk, reset;

input [4:0]readregl, readreg?, writereg;

input [31:0]writedata;

output [31:0]readdatal, readdataZ2;

// implementation details are left to the student...
endmodule

e Testing

Write a Verilog module to test your register file module. The test module should use the data given in
Table | as a benchmark. Generate the timing diagram and estimate the maximum delay in_your

design.

Table I. Data to be used in design testing and verification.

Cycle # Clock writedata writereg | regwrite | readregl | readreg2 | reset
1 1 to0 to 1 000000£f £, 00011, 0 00000, 00011, 1
2 1 to0 to 1 00000150, 00011, 1 00011, 00100, 0
3 1 to0 to 1 000000664, 00100, 1 00011, 00100, 0
4 1 to0 to 1 00000008, 00011, 0 00011, 01000, 0
5 1 to0 to 1 00000040, 010004, 0 00001, 00101, 0

The waveform for the clock signal should similar to the following one:

| testRegFile clk |r—\— —\— —\— —\—jf—\_

‘ Cycle 1 Cycle 2 Cycle 3 Cycle 4 Cycle 5
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CPE439: Computer Organization Lab
Experiment 4: Instruction and Data Memories

e Description

In this experiment, students have to design and test the instruction memory in addition to the data
memory in order to use them in the design of the MIPS like processor by the end of the semester. The
block diagrams and specifications for these units are shown Figure 1.

MemWrite
32
Address—F
32 | mnstruction Memory | 32 Data Memory 32
PC—f— 286 % 32 " —=—=Instruction 156 ‘“”"” ——a= ReadData
32
Write Dt —f—n

MemBead
Figure 1. The Block Diagram for Instruction and Data Memories.

e Procedure

The required memories are to be built using Verilog behavioral programming.
1) Instruction Memory
We just read from the instruction memory and we don’t write it, and we read an instruction every
cycle so we don’t need an explicit read signal. Write a Verilog module to implement this memory
and initialize it as given in the following module. You don’t have to add further statements. Pay
attention that the memory is 32 bit wide, i.e. it is word-addressed, while the PC which contains
the byte address. So, the contents of the program counter should be divided by 4.

module Instruction Memory (PC, instruction);
input [31:0] PC;

output [31:0] instruction;
reg [31:0] instruction;
reg [31:0] IM [255:07;

initial begin
IM[O] = 32'h00000010;

IM[1] = 32'h00000020;
IM[2] = 32'h00000030;
IM[3] = 32'h00000040;
IM[4] = 32'h00000050;
end

//MIPS instruction is 4 Byte, Processor counts bytes not words
always @ (PC )
#15 instruction = IM[PC>>2]; //To get the correct
//address, we divide by 4
endmodule



2) Data Memory

We write and read from the data memory, and we neither read nor write every cycle so we need
explicit read and write signals. Note that this data memory is also 32-bit wide, thus it is word-
addressed. However, the memory address formed in LW and SW instructions is the byte address.
The data memory should be initialized such that each location has a number greater than the
previous location by 1. For example, word 0 is initialized to 0x00000000, word 1 is 0x00000001,
word 2 is 0x00000002 and so on. Use for loop to do this initialization. Based on this
description, use the following template to implement this memory.

module Data Memory (readdata,
memread,

address, writedata, memwrite,

clk);

writedata ;
clk;

input [31:0] address ,
input memwrite , memread ,
output [31:0] readdata;

// implementation details are left to the student...
endmodule

e Testing

Write the Verilog modules to test your instruction and data memory modules. The test module for the
instruction memory should use the data given in Table | as a benchmark, and the test module for the data
memory should use the data given in Table Il as a benchmark.

Table I. Test data for Instruction Memory

PC
000000004,
00000004,
00000008,
0000000C,
000000104,
00000014,

Table Il. Test data for Data Memory

Cycle # Clock writedata address memread | memwrite
1 1 to 0 to 1 00000000, | 00000014, 0 0
2 1 to 0 to 1 000000e5, | 00000014, 1 0
3 1 to 0 to 1 00000£14, | 00000014, 0 1
4 1 to 0 to 1 0000000a, | 00000018, 0 1
5 l1 to0 tol 0000009e;, | 00000014, 1 0
6 1 to 0 to 1 0000007£, | 00000018, 1 0
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CPE439: Computer Organization Lab
Experiment 5: The Control Unit

e Description

In this experiment, students have to design and test the control unit to use it in the design
of the RISC-V like processor. The control unit is responsible for generating all the signals
required to control different elements of the processor datapath that will be designed in the
next experiment. The values of control signals are determined based on the opcode and
function fields of the RISC-V instructions. The block diagram and specifications for this unit

is shown in Figure 1.
'r3,L> aluop
alusrce

—_—
—2/—> pesre
_2/_> memitoreg

—— regwrite

-
func7 —F—»

t——p memread

4 3 4 o memwrite
funcd —F—» Control Unit

._>| branch
— [format

— LW
5 L » SW
opcode —/—p —_» BEQ

— JAL

L » JALR
Figure 1. The Block Diagram for the Control Unit.

e Procedure

In order to build this control unit, you need to find the equations for the output signals
which are shown on Table 1, then build these equations using behavioral modeling. Don’t
attempt to use logic minimization (e.g. K-maps) as the hardware has 17 inputs. Instead, use
the following approach:

1) Derive equations for signals that identify instructions from their opcodes. For example, a
signal LW which identifies a load instruction can have the following equation:
LW = op6.op5.o0p4

This equation works because the load instruction is the only instruction type that has the
most significant three bits of its opcode set to zero. Follow the same approach to write the
equations for all instruction types. Notice that the first six instructions in the table share
the same opcode; hence, only one equation is needed to identify them as R-format
instructions. Similarly, the five I-format instructions share the same opcode and only one
equation is needed to identify them.

Notice that six of these signals (i.e. Iformat, LW, SW, BEQ, JAL, JALR) will also be
outputs of the control unit module because they will be needed in experiment 6.



2) Derive the equations for the output signals using the signals found in the first bullet. Most
of the output signals (i.e. alusrc, pcsrc, memtoreg, regwrite, memread, memwrite, and
branch) rely only on the opcode and are not affected by the function fields. For example,
regwrite must be logic one for R-formate, I-formate, LW, JAL, and JALR instructions.
Hence, the equation of regwrite can be derived as follows:

regwrite = Rformat + [format + LW + JAL + JALR

3) For aluop[2:0] output signals, the equations depend on the opcode as well as the function
fields and can be derived by investigating the values given in Table 1. For example, the
equation of aluop[2] can be as follows:

aluop[2] = Rformat. (funcB[Z].funcB[l] + func7[5]) + Iformat. (func3[2].func3[1])

Your module should use the following template.

module ControlUnit (aluop, alusrc, pcsrc, memtoreg, regwrite,
memread, memwrite, branch, Iformat, LW, SW,
BEQ, JAL, JALR,
opcode, func3, func7);

input [6:0] opcode, func7;

input [2:0] func3;

output [2:0] aluop;

output [1:0] memtoreg, pcsrc;

output alusrc, regwrite, memread, memwrite, branch, Iformat,
LW, SW, BEQ, JAL, JALR;

endmodule

E s ol « | 8lzlg ol=z|lal?| 5 ¢ 3| & =
2 < < o g QE, s = c
OR 0110011 | 110 | 0000000 0 ojofojojojofoj1]o0qj0¢]oO
AND (0110011 | 111 | 0000000 0 oj1{o0jojojofojp1]0o0qj0¢]O
XOR |0110011 | 100 [ 0000000 0 11010 jJ]O0O)J]O0OfOfO]2T(O((O0O0]|O
ADD (0110011 | 000 | 0000000 0 i1{12f(ofofOofO)JO|21]0O0(f[O0]O
SLT (0110011 | 010 | 0000000 1 ir{ofofofofoOo)jOo|1]0O0(f0O0]O
SUB | 0110011 [ 000 | 0100000 1 11110 ]j]0|J0fOfO]2T(O((O0O0]|O
ORI 0010011 | 110 - 0 ojofr1j0(0jJ0]J]0]112(0f(0(f0O0
ANDI | 0010011 | 111 - 0 oj1f{1jo0fojoOojJoOo]j1T]0f[O]O
XORI | 0010011 | 100 - 0 ir{of1fofofOoO]JO]1T]0f[O0]O
ADDI | 0010011 | 000 - 0 1)1]111]j]010]0J]O0O]2((O0OfO(fO
SLTI | 0010011 | 010 - 1 r{of1fofofOo]JO]1T]0f[O0]O
LW 0000011 | 010 - 0 i1{12f(12f{0fO0fO]2]1]1([0]O0
SwW 0100011 | 010 - 0 11100 x|x|]O]JO0f[1]O0
BEQ | 1100011 | 000 - X X x| x]0]0]x|x]0]0]O0]1
JAL 1101111 | - - X XxX|[x|x]O0f[1T]2]0]212]0]0]x
JALR |1100111 | 000 - 0 1122 f2fof1]O0]212]0{fO0]x

Table 1. Truth Table for the Control Unit




e Testing

(Prelab.) write the Verilog modules to test your control unit module. The test module
should use the data given in Table 2 as a benchmark. Generate the timing diagram for the
control signals. Estimate the maximum delay in your design.

opcode func3 func?
0110011 110y 00000005
0110011, 111y 00000005
0110011, 100y 0000000y
0110011y 000y 00000005
0110011y 010y 00000005
0110011y 000y 0100000y
0010011y 110y -
0010011, 111y -
0010011y 100y -
0010011, 000y -
0010011, 010y -
0000011y 010y -
0100011y 010y -
1100011y 0005 -
11011115 - -
1100111, 0005 -

Table 2. Test data for the Control Unit
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CPE439: Computer Organization Lab
Experiment 6: Single Cycle Implementation

Description

In this experiment, students have to construct a Verilog module for a single cycle implementation
of the RISC-V like processor that they have been working on since the beginning of the semester.
This module should include the five modules that they have constructed in the previous experiments,
namely: ALU, RegFile, Instruction_Memory, Data_Memory, and ControlUnit modules.
Additionally, few small modules that required to support specific instructions are to be designed and
implemented.

Procedure

The single cycle implementation to be designed is shown in Figure 2. In order to build this
implementation, you need to design the following components and then connect them with the
modules constructed in previous experiments. To simplify the design, these new modules are to be
implemented using behavioral modeling.

) Secondary modules

1) 32-bit Adder
Your module should use the following template: (Adder delay = 50 ns)
module Adder32bit (out, a, b);
input [31:0] a, b;
output [31:0]out;

endmodule

2) Sign Extend Unit
The Sign Extend unit should be able to handle the immediate extension regardless of the
instruction’s format. Figure 1 shows the different RISC-V instruction formats. Three
instruction formats (i.e. I-type, S-type, and B-type) contain a 12-bit immediate and two
instruction formats (i.e. U-type and J-type) contain a 20-bit immediate. For example, in case
of the S-type, the Sign Extend unit needs to extract the 12-bit immediate from instruction bits
[11:7] and [31:25] then extend it by replicating bit [31] of the instruction 20 times.

In order to extract immediate correctly, the Sign Extend unit needs to identify the instruction
format. This can be done through the signals generated in the control unit which was designed
in experiment 5. Notice that the I-type format is used by the immediate instructions (e.g.
ADDI, ORI), the load instruction, and the jump-and-link-register instruction. The S-type is
used by the store instruction, the B-type is used by the branch-if-equal instruction, and the J-
type is used by the jump-and-link instruction. So and as an example, I-type input of the Sign
Extend unit can be derived as follows:

I — type = Iformat + LW + JALR



31 30 25 24 21 20 19 15 14 12 11 B 7 f 0

| funct? | rs2 | rs1 | funct3d | rd | opcode | R-type
| imm[11:0] [ sl [ funct3 | rd [opcode | I-type
[ mml5] ] 1s2 [ tsi | functd | imm[4:0] | opcode | S-type
| imm[12] | imm[10:5] | rs2 | rs1 | functd |imm[4:1] | imm[11] | opcode | B-type
| imm[31:12] | rd [ opcode | U-type
[mm[20]]  mm[i04]  [imm[i1]]  imm9:12] | rd [opcode | J-type

Figure 1. RISC-V Instruction Formats

Your module should use the following template:
module SignExtend (SEout, in, Iformat, LW, SW, BEQ, JAL,
JALR) ;
input [31:0]in;
input Iformat, LW, SW, BEQ, JAL, JALR;
output [31:0]SEout;

// implementation details are left to the student..
endmodule

3) Comparator
Your module should use the following template. (The delay = 10 ns)
module Comparator32bit (equal, a, b);
input [31:0]a, b;
output equal;

// implementation details are left to the student..
endmodule

4) 32-Bit Shift Left by 1 Unit
Your module should use the following template.
module ShiftLeft32 byl (out, in);
input [31:0]in;
output [31:0]out;

// implementation details are left to the student..
endmodule

5) (Prelab.) 32 Bit 3-to-1 Multiplexor
Your module should use the following template. (The delay = 6 ns)
module Mux 3 to 1 32bit(out, s, 12, il, 10);

input [31: ] i2, i1, 1i0;
input [1: ]
output [31 ]out

// implementation details are left to the student..
endmodule



6) (Prelab.) 32 Bit 2-to-1 Multiplexor
Your module should use the following template. (The delay = 6 ns)
module Mux 2 to 1 32bit(out, s, il, 1i0);
input [31:0] i1, 4i0;
input S;
output [31:0]out;

// implementation details are left to the student..
endmodule

7) The Program Counter
The program counter is a 32 bit register so we can use REG32negclk module which we have
built in register file experiment.

[ The Processor Module

Once you have implemented the previous modules, you can proceed and connect them to the modules
you have built in earlier experiments. Your module should use the following template.

module Processor (clk, reset, enable);

input clk, reset, enable;

//REG32negclk ProgramCounter (O, D, clk, reset, enable);
//Instruction Memory (PC, instruction);

//Adder32bit (out, a, b); for PC + 4

//ControlUnit (aluop, .., JALR, opcode, func3, func?);
//SignExtend (SEout, in, Iformat, LW, SW, BEQ, JAL, JALR);
//RegFile (readdatal ,readdata2, ... , clk, reset);

//Mux_2 to_1 32bit(out, s, il, 10); for the input b of the ALU
//ALU_32 (result, a, b, m);

//ShiftLeft32 byl (out, in);

//Adder32bit (out, a, b); to calculate branch/jal target Address
//Comparator32bit (equal, a, Db);

//AND (out, inl, in2);

//Mux 2 to_1 32bit(out, s, il, 10); branch/jal address or PC + 4
//Mux 3 to_1 32bit(out, s, 12, i1, 10); select the final address

//Data Memory (readdata , address, ... ., clk );
//Mux_3 to_1 32bit(out, s, i2, i1, 10);
endmodule



Testing
e (Prelab.) It is required to test your design for the entire processor by filling the instruction
memory module by the instructions sequence shown in the following table. You need to
determine the machine code for these instructions based on Table 1 of the previous experiment.
Table 1: The Content of the Instruction Memory

Address Instruction Machine Code
00 ORI x2, x0, 5 005061131
01 LW x5, 4(x0)

02 SUB X6, x2, x5
03 ADD X6, x6, x6
04 JAL x1l, 6

05 SLTI x7, x6, -4
06 BEQ x7, x0, 4
07 JALR x0, 0(x1)
08 SW x6, 4(x0)
09 LW x8, 4(x0)
10 XORI x9, x8, -1
11 AND x10, x9, x8

e (Prelab.) Next, write a Verilog test module to test your processor module, your test module
should run for 13 cycles.

Table 2: The Test Data for the Processor

Cycle # clk enable reset
1 1 to0 tol 1 1
2 1 to0 tol 1 0
3 1 to0 tol 1 0
4 1 to0 tol 1 0
5 1 to0 tol 1 0
6 1 to0 tol 1 0
7 1 to0 tol 1 0
8 1 to0 tol 1 0
9 1 to0 tol 1 0
10 1 to0 tol 1 0
11 1 to0 tol 1 0
12 1 to0 tol 1 0
13 1 to0 tol 1 0

The waveform for the clock signal should similar to the following one:
| clk P / ! | Y / \

| Cycle 1 Cycle 2 Cycle 3 Cycle 4 Cycle 5

Your timing diagram should contain the following signals:
a) Clock, reset, and enable.
b) The output of the program counter (PC).
c) The output of the instruction memory (Instruction).
d) The output of the Sign Extend (SEout).
e) The writedata, readregl, readreg2, and writereg for the register file.
f) The output for the registers x0, x1, X2, x5, X6, x7, x8, x9, and x10.
g) The input and the output of the ALU (a, b, m, result).
h) The output of the data memory.
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Figure 2. The Datapath of RISC-V Like Processor
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CPE439: Computer Organization Lab
Experiment 7: Pipelined Implementation

Description

In this experiment, students have to construct a Verilog module for a 5-stage pipelined
implementation of a RISC-V like processor. This module should include all modules that they
have been used in the implementation of the single cycle processor in addition to few small
modules that are required to the pipelined processor.

Procedure

The pipelined implementation to be designed is shown in Figure 1. In order to build this
implementation, you need to design the following components structurally and then add them
to the processor module which we built in the previous experiment.

e Secondary modules

1) (Prelab.) The Program Counter

We need to modify the program counter to make it a 32 bit register with positive edge
trigger to enable us to make the pipelining, so you may consider using 4 instances of
the 8-bit register module REG8 that is available in the library Library439.v. Your
module should use the following template.
module ProgramCounter (Q, D, clk, reset, enable);

input clk, reset, enable;

input [31:0] D;

output [31:0] Qs

endmodule

2) IF_ID Register
We need to build the pipeline register between fetch and decode stages this register is
a 96-bit register with positive edge trigger. Your module should use the following
template.

module IFID (Q, D, clk, reset, enable);
input clk, reset, enable;
input [95:0] D;
output [95:0] Q;

endmodule



3) ID_EX Register
We need to build the pipeline register between decode and execute stages this register
is a 153-bit register with positive edge trigger. Your module should use the following

template.

module IDEX (Q, D, clk, reset, enable);

input clk, reset, enable;

input [152:0] D;

output [152:0] Q;

// implementation details are left to the student
endmodule

4) EX_MEM Register
We need to build the pipeline register between execute and memory stages this register
is a 106-bit register with positive edge trigger. Your module should use the following

template.

module EXMEM (Q, D, clk, reset, enable);
input clk, reset, enable;
input [105:0] D;
output [105:0] Q;
// implementation details are left to the student

endmodule

5) MEM_WB Register
We need to build the pipeline register between memory and write back stages this
register is a 104-bit register with positive edge trigger. Your module should use the

following template.

module MEMWB (Q, D, clk, reset, enable);
input clk, reset, enable;
input [103:0] D;
output [103:0] Q;
// implementation details are left to the student

endmodule

® The Processor Module

Once you have implemented the previous modules, you can proceed and connect them to
the modules you have built in earlier experiments. Your module should use the following
template.

module PipelinedProcessor (clk, reset, enable);
input clk, reset, enable;

// implementation details are left to the student

endmodule



Testing

o (Prelab.) Itisrequired to test your design for the entire processor by filling the instruction
memory by the instruction sequence shown in the following table. You need to determine

the machine code for these instructions based on Table 1 in Experiment 5.

Table 1. The Content of the Instruction Memory

Address Instruction Machine Code
00 LW x1, 4(x0) 00402083
01 LW x2, 12 (x0)

02 LW x3, 20 (x0)

03 LW x4, 28 (x0)
04 AND x5, x1, x2
05 ORI x6, x3, 1023
06 SUB x7, x4, x2
07 XOR x8, x5, x4
08 ANDI x9, x6, 2047
09 SW x6, 8(x0)

10 LW x10, 8(x0)
11 OR x11l, x7, x8
12 SLT x12, x1, x4

o (Prelab.) Next, write a Verilog test module to test your processor module, your test

module should run for 18 cycles.

Table 2. The Test Data for the Processor
Cycle # clk enable reset
1 1l to0 to 1 1 1
2 1l to 0 to 1 1 0
3 1l to 0 to 1 1 0
4 1l to0 to 1 1 0
5 1l to 0 to 1 1 0
6 1l to 0 to 1 1 0
7 1l to 0 to 1 1 0
8 1l to0 to 1 1 0
9 1l to0 to 1 1 0
10 1l to 0 to 1 1 0
11 1l to0 to 1 1 0
12 1l to 0 to 1 1 0
13 1l to0 to 1 1 0
14 1l to0 to 1 1 0
15 1l to0 to 1 1 0
16 1l to0 to 1 1 0
17 1l to0 to 1 1 0
18 1l to0 to 1 1 0




The waveform for the clock, reset and enable signals should similar to the following one:

gl N e’ I W IR e IR v R W—

reset

Enable

Cycle 1 Cycle 2 Cycle 3 Cycle 4 Cycle 5

Your timing diagram should contain the following signals:
a) Clock, reset, and enable.
b) PC (The output of the program counter).
c¢) Instruction (The output of the instruction memory).
d) The writedata, readregl, readreg2, and writereg for the register file.
e) The output for the registers x1, x5, x6, X7, x8, x9, x10, x11, x12.
f) The input and the output of the ALU (a, b, m, result).
g) The output of the data memory.
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CPE439: Computer Organization Lab
Experiment 8: Resolving Data Hazards using Forwarding

Description

In this experiment, students have to add a forwarding unit that is capable of resolving register-
use data hazards for the pipelined processor that they implemented in experiment 7.

Register-use data hazards occur when there is dependence between consecutive instructions that
are being executed in the pipeline. Specifically, when the registers read by a later instruction are
effectively the destination for an earlier instruction, data hazards can occur. Consider for example:

add $1, $2, $3
sub %4, $1, $5
or $6, %1, $7

The last two instructions need to use the new value of $1. However, the new value is written by

the first instruction in the fifth cycle while it is needed in the second and third cycles for the second
and third instructions, respectively, as show in Figure 1 below:

add 351,

sub $4,51,85

Or $6,51,87

Figure 1. lllustration of data hazards.

In order to obtain correct operation, one solution would be to stall the pipeline for two cycles to
wait until the value is written to the register file, as shown in Figure 2:

add s$1, |IM

stall

stall

S0QSQ0 Y~03~

sub $4,$1,8$5 Reg

e

Figure 2. Solving data hazard by stalling the pipeline.

or $6,51,87

However, this solution affects the performance of the pipeline. Alternatively, we know that the
new value for $1 is computed and stored in the EX/MEM register by the end of the third cycle. So,
we can use this value before it is written to the register file by forwarding to the ALU input and use
it instead of the old value(s). Note how the value should be forwarded from the EX/MEM for the
second instruction and from the MEM/WB register for the third instruction to the ALU inputs as
shown in Figure 3. In other words, the inputs to the ALU are no longer the values read from the
register file when the data hazard exists.



add s1, |T

sub $4,51,%5

D~ ~

or $6,351,357

=0Q~0

or $8,51,8%89

xor $4,51,$5

Figure 3. Solving data hazard by forwarding.

The forwarding hardware is essentially a logic circuit that consists of a set of comparators that
compare the destination and source registers for consecutive instructions in addition to a set of
multiplexers connected to the ALU inputs as shown in Figure 4.

If the source register(s) (rs1 and/or rs2) for some instruction that has been decoded (stored in the
ID/EX register) matches the destination register for the instruction that has passed the execute stage
(stored in the EX/MEM register), then the input to the ALU should be the ALU result found in the
EX/MEM register instead of the values read for the conflicting instruction in the decode stage. The
same argument holds for the case when the source register(s) for an instruction matches the
destination register for an earlier instruction that has finished the memory stage (stored in the
MEM/WB register).

Basically, the forwarding unit hardware should implement the following conditions

1) Forwarding from the memory stage:
a. Iif (EXIMEM.RegWrite && (EX/MEM.RegRd == ID/EX.RegRsl) &&
(EX/MEM.RegRd !=0))
ForwardA[0] = 1;

b. if (EX/IMEM.RegWrite && (EX/MEM.RegRd == ID/EX.RegRs2) &&
(EX/IMEM.RegRd '=0))

ForwardB][0] = 1;
2) Forwarding from the write-back stage:
a. if (MEM/WB.RegWrite && (MEM/WB.RegRd == ID/EX.RegRsl) &&
((EX/IMEM.RegRd '= ID/EX.RegRsl) || (EX/IMEM.RegWrite==0)) &&
(MEM/WB.RegRd != 0))
ForwardA[1] = 1;
b. if (MEM/WB.RegWrite and (MEM/WB.RegRd == ID/EX.RegRs2) and
((EXIMEM.RegRd != ID/EX.RegRs2) || (EXIMEM.RegWrite==0)) &&
(MEM/WB.RegRd !=0))
ForwardB[1] = 1;

The ForwardA and ForwardB signals are outputs from the forwarding unit and are used to select the
proper input to the ALU.
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Procedure

In

order to incorporate the forwarding unit in your design, you need to implement the forwarding

unit and use 32-bit 3-to-1 multiplexers at the ALU inputs. Then, you should wire these new modules
with the pipelined implementation as shown in Figure 4.

1)

2)

3)

(Prelab.) 5-Bit Comparator
You need to write a structural Verilog module for 5-bit comparator. Your module should use
the following template:
module Comparatorbbit (equal, a, b);
input [4:0]a, b;
output equal;
// implementation details are left to the student
endmodule

The Forwarding Unit
You need to build the forwarding unit structurally using 5-bit comparator and any necessary
gates. Your module should use the following template:
module ForwardingUnit (ForwardA, ForwardB, EXMEM Rd,
MEMWB Rd, IDEX Rsl, IDEX Rs2,
EXMEM RegWrite, MEMWB RegWrite);

input [4:0] EXMEM Rd, MEMWB Rd, IDEX Rsl, IDEX Rs2;

input EXMEM RegWrite, MEMWB RegWrite;

output [l:0]ForwardA, ForwardB;

// implementation details are left to the student
endmodule

The processor module
You need to modify the pipelined processor module by adding the forwarding unit and ALU

multiplexers and any needed modifications.



Testing

e (Prelab.) write the Verilog module to test your forwarding unit. The test module for this unit
should use the data given in Table 1 as a benchmark,

Table 1. Test data for Forwarding Unit

EXMEM Rd | MEMWB Rd | IDEX Rsl | IDEX _Rs2 | EXMEM_RegWrite | MEMWB_RegWrite
5'p00001 5'p00001 5'p00001 5'b00001 0 0
5'b00001 5'b00011 5'b00001 5'b00000 1 0
5'b00001 5'b00001 5'b00001 5'b00001 0 1
5'p00011 5'p00010 5'p00101 5'b00010 1 1
5'p00101 5'p00101 5'p00101 5'b00110 1 1

e (Prelab.) Next, it is required to test your design for the pipelined processor by filling the
instruction memory module by the instruction sequence shown in Table 2.

Table 2. The Content of the Instruction Memory

Address Instruction Machine Code
00 LW x1l, 4 (x0) 004020831
01 LW x2, 12 (x0)

02 LW x3, 20 (x0)
03 LW x4, 28 (x0)
04 ADD x5, x2, x1
05 AND x6, x5, x5
06 SLTI x6, x5, 3
07 OR x7, x2, x4
08 XOR x7, x2, x4
09 ADD x8, x7, x7

o (Prelab.) Next, write a Verilog test module to test your processor module

e Your Timing diagram should contain the following signals:
a) PC (The output of the program counter).
b) Instruction (The output of the instruction memory).
c) The writedata, readregl, readreg2, and writereg for the register file.
d) The output for the registers x5, x6, X7, x8.
e) The input and the output of the ALU (a, b, m, result).
f) The output of forwarding unit (ForwardA, ForwardB).

e Calculate number of cycles needed to execute the above code.
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CPE439: Computer Organization Lab
Experiment 9: Resolving Control Hazards

Description

In the previous experiment, students worked on resolving one out of several cases where
data dependencies between instructions may cause data hazards in pipelining. In this
experiment, students have to modify their pipelining implementation to accommodate for a
new type of pipelining hazards; namely, control hazards.

Control hazards arise when executing program flow control instructions such as beq, jal,
and jalr. After these instructions are fetched (i.e. stored in the IF/ID register), the processor
starts fetching the following instruction (i.e. instruction at PC+4). In case of beq instruction,
fetching the instruction at PC+4 might not be correct if the condition evaluates to true (i.e.
equal = 1) which is done by the comparator in the decode stage. Instead, the processor should
have fetched the instruction pointed-to by the branch target address (i.e. PC of branch +
SignExtend(immediate) X 2) which is computed by the adder in the decode stage.

In case of unconditional flow instructions (i.e. jal and jalr), fetching the instruction at PC+4
is always wrong since the processor is supposed to fetch the instruction pointed-to by the target
address. Notice the target address of jal (i.e. PC of jal + SignExtend(immediate) X 2) is
computed using the adder in the decode stage (i.e. same as beq instruction). On the other hand,
the target address of jalr (i.e. (rs1) + SignExtend(immediate)) is computed by the ALU in
the execute stage.

In order to resolve these hazards, all instructions that are fetched wrongly have to be
removed (flushed) from the pipeline. Since beq and jal instructions are resolved in the decode
stage (i.e. branch condition is evaluated and target address is computed), we only need to flush
the instruction in the fetch stage. On the other hand, jalr instruction is resolved in the execute
stage and the instructions in the fetch and decode stage must be flushed.

The flushing is implemented by resetting the stage register(s) when the control hazard is
detected. For beq instruction, the control hazard is detected when the beq is in the decode stage
(i.e. branch control signal = 1) and the comparator output (i.e. equal) is 1. For jal instruction,
the control hazard is detected when the jal is in the decode stage (i.e. pcsrc[0] = 1). Hence, for
beq and jal instructions we only need to reset the IF/ID register in order to flush the instruction
in the fetch stage. The required hardware to handle control hazards of beq and jal instructions
is shown in Figure 1.

For jalr instruction, the control hazard is detected when the jalr is in the execute stage (i.e.
pcsrc[1] in execute stage = 1) and we need to reset the IF/ID and ID/EX registers in order to
flush the instructions in the fetch and decode stages, respectively. The required hardware to
handle control hazards of jalr instruction is also shown in Figure 1.



Notice that our hardware already selects one of three options when updating the PC value:

PC + 4, target address of beg/jal computed in the decode stage, and target address of jal
computed in the execute stage.

Procedure

1) The processor module

You need to modify the pipelined processor module by adding the OR gates required
to resolve the control hazards and make the needed modifications.

reset

Flushl

pesre [0]

reset
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Injstr [31:25] \__branch

/ regwrite
ristr [14:12]= Control [ memtoreg

Y

Ifjstr [6:0] Unit | memwrite

> memread

aluo|

alusrc

nstr [19:15]
nbtr [24:20]

aluop

32
Instr [31:0]
. /
312 32 -
2
Iformat, LW, SW, BEQ, JAL, JALR ot
/ - IDEX_Rs2 Forwards | | ForwardA
Instr [24:20] 57 / ;
Instr [19:15] 5 A . .
Instr [11:7] 57

Figure 1: Resolving Control Hazards
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Testing

e (Prelab.) Test your design for the pipelined processor by filling the instruction memory
by the instruction sequence shown in Table 1.

Table 1. The Content of the Instruction Memory

Address Instruction Machine Code
00 LW x1, 4(x0) 00402083y
01 LW x2, 12 (x0)

02 LW x3, 20 (x0)
03 LW x4, 28 (x0)
04 AND x5, x1, x3
05 ORI x6, x5, 1023
06 SUB x8, x4, x2
07 JAL x1, 8

08 XOR x7, x5, x6
09 SW x7, 8(x0)
10 BEQ x8, x4, 10
11 ADDI x8, x8, 3
12 SW x5, 8(x0)
13 SW x6, 24 (x0)
14 JALR x0, 0(x1)
15 SUB x9, x8, x3
16 SLT x10, x9, x4

e (Prelab.) Next, write a Verilog test module to test your processor module

e Your timing diagram should contain the following signals:
a) The output of the program counter (PC)
b) The output of IFID register and IDEX register.
c) The output for the registers R5, R6, R7, R8, R9, R10.
d) The output of forwarding unit (ForwardA, ForwardB).
e) Flushl and Flush2.
f) The writedata and memwrite for the data memory.

e Calculate number of cycles needed to execute the above code.
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Pipelining the MIPS ISA

2 What makes it easy

e all instructions are the same length (32 bits)
- can fetch in the 1st stage and decode in the 2" stage

e few instruction formats (three) with symmetry across formats
- can begin reading register file in 2" stage

e memory operations can occur only in loads and stores
- can use the execute stage to calculate memory addresses

e each MIPS instruction writes at most one result (i.e.,
changes the machine state) and does so near the end of the
pipeline (MEM and WB)

a What makes it hard

e structural hazards: what if we had only one memory?
e control hazards: what about branches?

e data hazards: what if an instruction’s input operands depend
on the output of a previous instruction?



Can Pipelining Get Us Into Trouble?

Q Yes: Pipeline Hazards

e structural hazards: attempt to use the same resource by two
different instructions at the same time

e data hazards: attempt to use data before it is ready

- An instruction’s source operand(s) are produced by a prior
instruction still in the pipeline

- Note that data hazards can come from R-type instructions or Iw
Instructions

e control hazards: attempt to make a decision about program
control flow before the condition has been evaluated and the
new PC target address calculated

- branch instructions
0 Can always resolve hazards by waiting
e pipeline control must detect the hazard
e and take action to resolve hazards



Structural Hazard — Reqgister File
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Data Hazards with Register Usage

0 Dependencies backward in time cause hazards

add $1, IM

sub $4,$1,8$5

Or $6,51,87

0O Register-use data hazard



Fixing Register-use Data Hazards with Stalls
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_Fixing Data Hazards with Forwarding
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Pipelining Hazard — Example 1

0 Consider the following code segment in C
A=B+E
C=B+F

(1) Generate the MIPS code assuming that variables
A,B, C, E, and F are in memory and addressable with
offsets 0, 4, 8, 12, and 16 from $tO

(2) Find all the data hazards and determine the number
of cycles required to run the code .

(3) Can you reorder the code to reduce the stalls ?

* Assume the forwarding discussed so far is
Implemented



Pipelining Hazard — Example 1
# MIPS Code
lw  $t1, 4($t0) # loads B

lw , ($t0) # loads E
add $t3, $t1,$t) #A=B+E

sw $t3, O($t0) # stores A

lw , 6($t0) # loads F
add $t5, $t1,$t4) #C =B + F
sw  $t5, 8($t0) # stores C

# we have two load-use hazards = add two cycles

10



Pipelining Hazard — Example 1

0 Ideally, we need 11 (5 + 6) cycles to execute the code
0 with the presence of 2 stalls, we need 13 cycles

0 Reordered code

w  $tl, 4($t0) # loads B
w  $t2, 12($t0) # loads E
w  $t4, 16($t0) # loads F
add $t3, $t1, $t2 # A=B+E
sw  $t3, O($t0) # stores A
add $t5, $t1,$t4 #C =B+ F
sw  $t5, 8($t0) # stores C

0 Now we don't have load-use hazards; we need 11 cycles

11



Pipelining Hazard — Example 2

0 Assume that the pipelined MIPS processor without
forwarding is used to run a program with the following
Instruction mix: 20% loads, 20% store, and 60% ALU.
Then compute the average CPI given that

e 10% of the ALU instructions result in load-use hazards.
e 15% of the ALU instructions result in read-before-write hazards.

Q Ideally, the average CPI is 1 for each instruction

a With no forwarding
 Load-use hazards add two cycles

[ Register-use hazards add two cycles
O Average CPI=0.2x1+02x1+0.75x0.60x 1+
0.1x0.60x3+0.15x0.60x3=1.30

12



